Nature Neuroscience

A data-driven framework for mapping domains of human neurobiology

  • 1.

    Bard, J. B. L. & Rhee, S. Y. Ontologies in biology: design, applications and future challenges. Nat. Rev. Genet. 5, 213–222 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Alterovitz, G. et al. Ontology engineering. Nat. Biotechnol. 28, 128–130 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Price, C. J. & Friston, K. J. Functional ontologies for cognition: the systematic definition of structure and function. Cogn. Neuropsychol. 22, 262–275 (2005).

    PubMed 

    Google Scholar
     

  • 5.

    Nuzzo, R. How scientists fool themselves – and how they can stop. Nature 526, 182–185 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26, 1910–1922 (2016).

    PubMed 

    Google Scholar
     

  • 7.

    Liu, X., Hairston, J., Schrier, M. & Fan, J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35, 1219–1236 (2011).

    PubMed 

    Google Scholar
     

  • 8.

    Wager, T. D., Jonides, J. & Reading, S. Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage 22, 1679–1693 (2004).

    PubMed 

    Google Scholar
     

  • 9.

    Siegel, E. H. et al. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 144, 343–393 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Redick, T. S. & Lindsey, D. R. B. Complex span and n-back measures of working memory: a meta-analysis. Psychon. Bull. Rev. 20, 1102–1113 (2013).

    PubMed 

    Google Scholar
     

  • 11.

    Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    PubMed 

    Google Scholar
     

  • 13.

    Stephan, K. E. et al. Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 3, 77–83 (2016).

    PubMed 

    Google Scholar
     

  • 14.

    Fox, P. T. & Lancaster, J. L. Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 3, 319–321 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    PubMed 

    Google Scholar
     

  • 17.

    Diedrichsen, J., Balster, J. H., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. NeuroImage 46, 39–46 (2009).

    PubMed 

    Google Scholar
     

  • 18.

    Poldrack, R. A. et al. The Cognitive Atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 17 (2011).

  • 19.

    Poldrack, R. A. Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72, 692–697 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Schröter, M., Paulsen, O. & Bullmore, E. T. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat. Rev. Neurosci. 18, 131–146 (2017).

    PubMed 

    Google Scholar
     

  • 21.

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kragel, P. A. et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nat. Neurosci. 21, 283–289 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Wang, X. et al. Representational similarity analysis reveals task-dependent semantic influence of the visual word form area. Sci. Rep. 8, 3047 (2018).

  • 24.

    von Luxburg, U., Williamson, R. C. & Guyon, I. Clustering: science or art? JMLR: Workshop Conf. Proc. 27, 65–79 (2012).


    Google Scholar
     

  • 25.

    Pennington, J., Socher, R. & Manning, C. GloVe: global vectors for word representation. Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1532–1543 (2014).

  • 26.

    McCoy, T. H. et al. High throughput phenotyping for dimensional psychopathology in electronic health records. Biol. Psychiatry 83, 997–1004 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Kessler, R. C. et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Contractor, A. A. et al. Latent profile analyses of posttraumatic stress disorder, depression and generalized anxiety disorder symptoms in trauma-exposed soldiers. J. Psychiatr. Res. 68, 19–26 (2015).

    PubMed 

    Google Scholar
     

  • 29.

    Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3, 472–480 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).


    Google Scholar
     

  • 31.

    Barrett, L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12, 1833 (2017).

  • 32.

    Kornblum, S., Hasbroucq, T. & Osman, A. Dimensional overlap: cognitive basis for stimulus-response compatibility – a model and taxonomy. Psychol. Rev. 97, 253–270 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc. Natl Acad. Sci. USA 95, 831–838 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    McCoy, T. H. et al. Genome-wide association study of dimensional psychopathology using electronic health records. Biol. Psychiatry 83, 1005–1011 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Cottaris, N. P. & De Valois, R. L. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896–900 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Salmelin, R., Hari, R., Lounasmaa, O. V. & Sams, M. Dynamics of brain activation during picture naming. Nature 368, 463–465 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Gutschalk, A., Patterson, R. D., Scherg, M., Uppenkamp, S. & Rupp, A. Temporal dynamics of pitch in human auditory cortex. NeuroImage 22, 755–766 (2004).

    PubMed 

    Google Scholar
     

  • 40.

    Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Func. 214, 655–667 (2010).


    Google Scholar
     

  • 41.

    van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    PubMed 

    Google Scholar
     

  • 42.

    McTeague, L. M. et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676–685 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Eisenberg, I. W. et al. Uncovering the structure of self-regulation through data-driven ontology discovery. Nat. Commun. 10, 2319 (2019).

  • 44.

    Bolt, T. et al. Ontological dimensions of cognitive-neural mappings. Neuroinformatics 18, 451–463 (2020).

    PubMed 

    Google Scholar
     

  • 45.

    Bertolero, M. A., Yeo, B. T. T., Bassett, D. S. & D’Esposito, M. A mechanistic model of connector hubs, modularity and cognition. Nat. Hum. Behav. 2, 765–777 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Ioannidis, J. P. A., Fanelli, D., Dunne, D. D. & Goodman, S. N. Meta-research: evaluation and improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Adv. Neural Inf. Proc. Syst. 2016, 4349–4357 (2016).


    Google Scholar
     

  • 48.

    Voytek, J. B. & Voytek, B. Automated cognome construction and semi-automated hypothesis generation. J. Neurosci. Methods 208, 92–100 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Yarkoni, T. Automated Coordinate Extractor (ACE) (GitHub, 2015).

  • 50.

    Lancaster, J. L. et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).


    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button