Nature Neuroscience

Causal reductionism and causal structures

  • 1.

    Marr, D. Vision: a Computational Investigation into the Human Representation and Processing of Visual Information (MIT Press, 1982).

  • 2.

    Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Bickle, J. Marr and reductionism. Top. Cogn. Sci. 7, 299–311 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Kim, J. Mind in a Physical World: an Essay on the Mind–Body Problem and Mental Causation (MIT press, 1998). Classical philosophical work introducing the causal exclusion argument and employing it in the context of reductive physicalism.

  • 5.

    Crick, F. The Astonishing Hypothesis (Scribner’s, New York, 1994). An explicit endorsement of causal reductionism in the neuroscience literature. Strictly speaking, Crick was making an ontological statement in addition to a causal statement.

  • 6.

    Albantakis, L. & Tononi, G. The intrinsic cause–effect power of discrete dynamical systems—from elementary cellular automata to adapting animats. Entropy 17, 5472–5502 (2015).

    Article 

    Google Scholar
     

  • 7.

    Albantakis, L., Marshall, W., Hoel, E. & Tononi, G. What caused what? a quantitative account of actual causation using dynamical causal networks. Entropy 21, 459 (2019). Formal exposition of causal structure analysis, which is based on an interventional, counterfactual notion of causation. Rather than testing a single counterfactual, causal structure analysis takes into account all possible counterfactuals (system states), allowing for a probabilistic formulation. Further differences with other approaches to actual causation are also discussed, including the distinction between cause and effect, composition, integration and exclusion.

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Juel, B. E., Comolatti, R., Tononi, G. & Albantakis, L. When is an action caused from within? Quantifying the causal chain leading to actions in simulated agents. in Proceedings of the ALIFE 2019: The 2019 Conference on Artificial Life, 477–484 (MIT Press, 2019).

  • 9.

    Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. What the frog’s eye tells the frog’s brain. Proc. IRE 47, 1940–1951 (1959).

    Article 

    Google Scholar
     

  • 10.

    Albantakis, L., Hintze, A., Koch, C., Adami, C. & Tononi, G. Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLoS Comput. Biol. 10, e1003966 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Albantakis, L. & Tononi, G. Causal composition: structural differences among dynamically equivalent systems. Entropy 21, 989 (2019).

    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Oizumi, M., Albantakis, L. & Tononi, G. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0. PLoS Comput. Biol. 10, e1003588 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 13.

    Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: from consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450–461 (2016). The IIT formalism establishes whether a system qualifies as an intrinsic entity—a maximum of intrinsic, structured, specific, irreducible cause–effect power—which is required for a complete account of causation, since only what exists can cause. The IIT analysis of cause–effect power examines potential causes and effects from the intrinsic perspective of a system in a single state (potential causation). By contrast, causal structure analysis examines what actually caused what based on a sequence of states that have happened (actual causation). It should be noted that in this paper we do not consider whether our example systems qualify as intrinsic entities and what that would imply for causation. Instead, we have attempted to illustrate the incoherence of causal reductionism purely within a biological and functional framework.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Haun, A. & Tononi, G. Why does space feel the way it does? Towards a principled account of spatial experience. Entropy 21, 1160 (2019).

    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Ay, N. & Polani, D. Information flows in causal networks. Adv. Complex Syst. 11, 17–41 (2008).

    Article 

    Google Scholar
     

  • 16.

    Janzing, D., Balduzzi, D., Grosse-Wentrup, M. & Schölkopf, B. Quantifying causal influences. Ann. Stat. 41, 2324–2358 (2013).

    Article 

    Google Scholar
     

  • 17.

    Halpern, J. Y. & Pearl, J. Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56, 843–887 (2005). Halpern and Pearl’s account is currently the most established approach to actual causation. Unlike causal structure analysis, it does not evaluate causal strength. Instead, it aims to provide a set of contingency conditions under which a simple, counterfactual test may be applied to identify variables that are causally relevant for the occurrence of a particular event.

    Article 

    Google Scholar
     

  • 18.

    Halpern, J. Y. Actual Causality (MIT Press, 2016).

  • 19.

    Pearl, J. Causality: Models, Reasoning and Inference (Cambridge University Press, 2000). Seminal contribution introducing a causal calculus—a formal framework to evaluate interventions in causal Bayesian networks. The book also offers an overview over methods for ‘causal inference’—how to define a causal model from sparse data. While causal structure analysis makes use of interventions and causal Bayesian networks, it is not concerned with causal inference.

  • 20.

    Gomez, J. D., Mayner, W. G. P., Beheler-Amass, M., Tononi, G. & Albantakis, L. Computing Integrated Information (Φ) in discrete dynamical systems with multi-valued elements. Entropy 23, 6 (2020).

  • 21.

    Putnam, H. Psychological Predicates. in Art, Mind and Religion (eds. W. Capitan & D. Merrill) 37–48 (University of Pittsburgh Press, 1967).

  • 22.

    Sober, E. The multiple realizability argument against reductionism. Philos. Sci. 66, 542–564 (1999).

    Article 

    Google Scholar
     

  • 23.

    Aizawa, K. Neuroscience and multiple realization: a reply to Bechtel and Mundale. Synthese 167, 493–510 (2009).

    Article 

    Google Scholar
     

  • 24.

    Aizawa, K. Multiple realizability by compensatory differences. Eur. J. Philos. Sci. 3, 69–86 (2013).

    Article 

    Google Scholar
     

  • 25.

    Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy and redundancy in biological networks. Proc. Natl Acad. Sci. USA 96, 3257–3262 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Kelso, J. S. Multistability and metastability: understanding dynamic coordination in the brain. Philos. Trans. R. Soc. B Biol. Sci. 367, 906–918 (2012).

    Article 

    Google Scholar
     

  • 27.

    Brennan, C. & Proekt, A. A quantitative model of conserved macroscopic dynamics predicts future motor commands. Elife 8, e46814 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Hemberger, M., Pammer, L. & Laurent, G. Comparative approaches to cortical microcircuits. Curr. Opin. Neurobiol. 41, 24–30 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Marder, E., Goeritz, M. L. & Otopalik, A. G. Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr. Opin. Neurobiol. 31, 156–163 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    McIntosh, A. R. Contexts and catalysts. Neuroinformatics 2, 175–181 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 31.

    Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 32.

    Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Panzeri, S., Macke, J. H., Gross, J. & Kayser, C. Neural population coding: combining insights from microscopic and mass signals. Trends Cogn. Sci. 19, 162–172 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Frégnac, Y. Big data and the industrialization of neuroscience: a safe roadmap for understanding the brain? Science 358, 470–477 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 36.

    Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Beer, R. D. Beyond control: the dynamics of brain–body–environment interaction in motor systems. Adv. Exp. Med. Biol. 629, 7–24 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 38.

    Norton, J. D. Causation as folk science. Philosophers’ Imprint 3, 1–22 (2003).

  • 39.

    Hume, D. An Enquiry Concerning Human Understanding (Clarendon Press, 2000). 1748.


    Google Scholar
     

  • 40.

    Russell, B. On the notion of cause. Proc. Aristotelian Soc. 13, 1–26 (1913).

    Article 

    Google Scholar
     

  • 41.

    Lewis, D. K. On the Plurality of Worlds. (Blackwell, 1986).


    Google Scholar
     

  • 42.

    Chicharro, D. & Ledberg, A. When two become one: the limits of causality analysis of brain dynamics. PLoS ONE 7, e32466 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    James, R. G., Barnett, N. & Crutchfield, J. P. Information flows? a critique of transfer entropies. Phys. Rev. Lett. 116, 238701 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 44.

    Selimbeyoglu, A. & Parvizi, J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Massimini, M., et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).

  • 47.

    Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J. & Friston, K. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58, 339–361 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • 49.

    Davidson, D. Mental events. In Readings in Philosophy of Psychology (ed. Block, N.) 107–119 (Cambridge, Harvard University Press, 1980).

  • 50.

    Kim, J. Physicalism, or Something Near Enough (Princeton University Press, 2005).


    Google Scholar
     

  • 51.

    Kim, J. Supervenience and supervenient causation. South. J. Philos. 22, 45–56 (1983).

    Article 

    Google Scholar
     

  • 52.

    Kelso, J. A. Synergies: atoms of brain and behavior. Adv. Exp. Med. Biol. 629, 83–91 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Hoel, E. P., Albantakis, L., Marshall, W. & Tononi, G. Can the macro beat the micro? Integrated information across spatiotemporal scales. Neurosci. Conscious. 1, niw012 (2016).

    Article 

    Google Scholar
     

  • 54.

    Marshall, W., Albantakis, L. & Tononi, G. Black-boxing and cause-effect power. PLoS Comput. Biol. 14, e1006114 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 55.

    Albantakis, L., Massari, F., Beheler-Amass, M. & Tononi, G. A macro agent and its actions. Preprint at https://arxiv.org/abs/2004.00058 (2020).


  • Source link

    Related Articles

    Leave a Reply

    Back to top button