Nature Neuroscience

Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence

  • 1.

    Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Albo, Z. & Gräff, J. The mysteries of remote memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170029 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Khan, Z. U., Martín-Montañez, E., Navarro-Lobato, I. & Muly, E. C. Memory deficits in aging and neurological diseases. Prog. Mol. Biol. Transl. Sci. 122, 1–29 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Tonegawa, S., Morrissey, M. D. & Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Santello, M., Toni, N. & Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Haydon, P. G. & Nedergaard, M. How do astrocytes participate in neural plasticity? Cold Spring Harb. Perspect. Biol. 7, a020438 (2014).

    PubMed 

    Google Scholar
     

  • 9.

    Zhang, K. et al. Sensory response of transplanted astrocytes in adult mammalian cortex in vivo. Cereb. Cortex 26, 3690–3704 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Petzold, G. C., Albeanu, D. F., Sato, T. F. & Murthy, V. N. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58, 897–910 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Takata, N. et al. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J. Neurosci. 31, 18155–18165 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Panatier, A. et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146, 785–798 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Henneberger, C., Papouin, T., Oliet, S. H. & Rusakov, D. A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Kol, A. et al. Astrocytes contribute to remote memory formation by modulating hippocampal–cortical communication during learning. Nat. Neurosci. 23, 1229–1239 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Navarrete, M. et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 10, e1001259 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Martin-Fernandez, M. et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20, 1540–1548 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Orr, A. G. et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat. Neurosci. 18, 423–434 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Robin, L. M. et al. Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 98, 935–944.e5 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71.e14 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Dalmay, T. et al. A critical role for neocortical processing of threat memory. Neuron 104, 1180–1194.e7 (2019).

    PubMed 

    Google Scholar
     

  • 26.

    Guo, W., Robert, B. & Polley, D. B. The cholinergic basal forebrain links auditory stimuli with delayed reinforcement to support learning. Neuron 103, 1164–1177.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Hirase, H., Qian, L., Barthó, P. & Buzsáki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, E96 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Yao, J. et al. A corticopontine circuit for initiation of urination. Nat. Neurosci. 21, 1541–1550 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Qin, H. et al. A visual-cue-dependent memory circuit for place navigation. Neuron 99, 47–55.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Thrane, A. S. et al. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc. Natl Acad. Sci. USA 109, 18974–18979 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Stobart, J. L. et al. Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron 98, 726–735.e4 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Stobart, J. L. et al. Long-term in vivo calcium imaging of astrocytes reveals distinct cellular compartment responses to sensory stimulation. Cereb. Cortex 28, 184–198 (2018).

    PubMed 

    Google Scholar
     

  • 36.

    Chen, X., Leischner, U., Rochefort, N. L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Rothschild, G., Nelken, I. & Mizrahi, A. Functional organization and population dynamics in the mouse primary auditory cortex. Nat. Neurosci. 13, 353–360 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Li, J. et al. Primary auditory cortex is required for anticipatory motor response. Cereb. Cortex 27, 3254–3271 (2017).

    PubMed 

    Google Scholar
     

  • 39.

    Tischbirek, C. H. et al. In vivo functional mapping of a cortical column at single-neuron resolution. Cell Rep. 27, 1319–1326.e5 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Wang, M. et al. Single-neuron representation of learned complex sounds in the auditory cortex. Nat. Commun. 11, 4361 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Sharma, G. & Vijayaraghavan, S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl Acad. Sci. USA 98, 4148–4153 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Srinivasan, R. et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92, 1181–1195 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Bekar, L. K., He, W. & Nedergaard, M. Locus coeruleus α-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb. Cortex 18, 2789–2795 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Ding, F. et al. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54, 387–394 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N. & Ikegaya, Y. Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31, 2607–2614 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Paukert, M. et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82, 1263–1270 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Oe, Y. et al. Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat. Commun. 11, 471 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Huerta, P. T., Sun, L. D., Wilson, M. A. & Tonegawa, S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 25, 473–480 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Grienberger, C. et al. Sound-evoked network calcium transients in mouse auditory cortex in vivo. J. Physiol. 590, 899–918 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Ghosh, S. & Chattarji, S. Neuronal encoding of the switch from specific to generalized fear. Nat. Neurosci. 18, 112–120 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    García-Cáceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    PubMed 

    Google Scholar
     

  • 52.

    Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Zhang, K. & Chen, X. Sensory response in host and engrafted astrocytes of adult brain in vivo. Glia 65, 1867–1884 (2017).

    PubMed 

    Google Scholar
     

  • 55.

    Martín, R., Bajo-Grañeras, R., Moratalla, R., Perea, G. & Araque, A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349, 730–734 (2015).

    PubMed 

    Google Scholar
     

  • 56.

    Mariotti, L. et al. Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat. Commun. 9, 82 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Froemke, R. C. et al. Long-term modification of cortical synapses improves sensory perception. Nat. Neurosci. 16, 79–88 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Duffy, A. M. et al. Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex. Synapse 65, 1350–1367 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Blanco-Suárez, E., Caldwell, A. L. M. & Allen, N. J. Role of astrocyte–synapse interactions in CNS disorders. J. Physiol. 595, 1903–1916 (2017).

    PubMed 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button