Nature Neuroscience

Gated feedforward inhibition in the frontal cortex releases goal-directed action

  • 1.

    Crochet, S., Lee, S. H. & Petersen, C. C. H. Neural circuits for goal-directed sensorimotor transformations. Trends Neurosci. 42, 66–77 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-initiated actions in secondary motor cortex. Nat. Neurosci. 17, 1574–1582 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Schall, J. D. Accumulators, neurons, and response time. Trends Neurosci. 42, 848–860 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Purcell, B. A., Schall, J. D., Logan, G. D. & Palmeri, T. J. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J. Neurosci. 32, 3433–3446 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Narayanan, N. S., Horst, N. K. & Laubach, M. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 139, 865–876 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Narayanan, N. S. & Laubach, M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52, 921–931 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Muir, J. L., Everitt, B. J. & Robbins, T. W. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb. Cortex 6, 470–481 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Zhang, S. et al. Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat. Neurosci. 19, 1733–1742 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Ungerleider, L. G., Galkin, T. W., Desimone, R. & Gattass, R. Cortical connections of area V4 in the macaque. Cereb. Cortex 18, 477–499 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Schall, J. D. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J. Neurophysiol. 66, 559–579 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 e1016 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Hintiryan, H. et al. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100–1114 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Terra, H. et al. Prefrontal cortical projection neurons targeting dorsomedial striatum control behavioral inhibition. Curr. Biol. 30, 4188–4200 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Corbit, V. L., Manning, E. E., Gittis, A. H. & Ahmari, S. E. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J. Neurosci. 39, 2965–2975 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Lee, K. et al. Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron 93, 1451–1463 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Logan, G. D., Cowan, W. B. & Davis, K. A. On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. Hum. Percept. Perform. 10, 276–291 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    D’Souza, R. D., Meier, A. M., Bista, P., Wang, Q. & Burkhalter, A. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife 5, e19332 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Zagha, E., Ge, X. & McCormick, D. A. Competing neural ensembles in motor cortex gate goal-directed motor output. Neuron 88, 565–577 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Fellows, L. K. & Farah, M. J. Is anterior cingulate cortex necessary for cognitive control? Brain 128, 788–796 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Rho, H. J., Kim, J. H. & Lee, S. H. Function of selective neuromodulatory projections in the mammalian cerebral cortex: comparison between cholinergic and noradrenergic systems. Front. Neural Circuits 12, 47 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769–785 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Lee, S. H. & Dan, Y. Neuromodulation of brain states. Neuron 76, 209–222 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Hu, H., Gan, J. & Jonas, P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Ferguson, B. R. & Gao, W. J. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12, 37 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Schall, J. D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Maimon, G. & Assad, J. A. A cognitive signal for the proactive timing of action in macaque LIP. Nat. Neurosci. 9, 948–955 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Woodman, G. F., Kang, M. S., Thompson, K. & Schall, J. D. The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow. Psychol. Sci. 19, 128–136 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Hu, F. et al. Prefrontal corticotectal neurons enhance visual processing through the superior colliculus and pulvinar thalamus. Neuron 104, 1141–1152 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Li, B., Nguyen, T. P., Ma, C. & Dan, Y. Inhibition of impulsive action by projection-defined prefrontal pyramidal neurons. Proc. Natl Acad. Sci. USA 117, 17278–17287 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Stuphorn, V. Neural mechanisms of response inhibition. Curr. Opin. Behav. Sci. 1, 64–71 (2015).


    Google Scholar
     

  • 44.

    Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M. & Swann, A. C. Psychiatric aspects of impulsivity. Am. J. Psychiatry 158, 1783–1793 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Rubia, K. et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry 156, 891–896 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl). 146, 373–390 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Morein-Zamir, S. & Robbins, T. W. Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Res. 1628, 117–129 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Gut-Fayand, A. et al. Substance abuse and suicidality in schizophrenia: a common risk factor linked to impulsivity. Psychiatry Res. 102, 65–72 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Song, Y. H. et al. A neural circuit for auditory dominance over visual perception. Neuron 93, 940–954 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Song, J. H. et al. Precise mapping of single neurons by calibrated 3D reconstruction of brain slices reveals topographic projection in mouse visual cortex. Cell Rep. 31, 107682 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Hazan, L., Zugaro, M. & Buzsaki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods 155, 207–216 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Kim, D. et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron 92, 902–915 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button