Nature Neuroscience

GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation

  • 1.

    Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Casoni, F. et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143, 3969–3981 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Chachlaki, K., Garthwaite, J. & Prevot, V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat. Rev. Endocrinol. 13, 521–535 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Prevot, V. Puberty in mice and rats. in Knobil and Neill’s Physiology of Reproduction (eds. Plant, T. M. & Zeleznik, J.) 1395–1439 (Elsevier, New York, 2015).

  • 6.

    Clasadonte, J. & Prevot, V. The special relationship: glia–neuron interactions in the neuroendocrine hypothalamus. Nat. Rev. Endocrinol. 14, 25–44 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Sloan, S. A. & Barres, B. A. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr. Opin. Neurobiol. 27, 75–81 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Verkhratsky, A. & Nedergaard, M. Physiology of astroglia. Physiol. Rev. 98, 239–389 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Bandeira, F., Lent, R. & Herculano-Houzel, S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc. Natl Acad. Sci. USA 106, 14108–14113 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Elkharraz, K. et al. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: preparation and physicochemical characterization. Int. J. Pharm. 314, 127–136 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Wang, L. et al. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. Elife 8, e43999 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Mohr, M. A., DonCarlos, L. L. & Sisk, C. L. Inhibiting production of new brain cells during puberty or adulthood blunts the hormonally induced surge of luteinizing hormone in female rats. eNeuro 4, ENEURO.0133-17.2017 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Lopez-Rodriguez, D., Franssen, D., Bakker, J., Lomniczi, A. & Parent, A. S. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat. Rev. Endocrinol. 17, 83–96 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Geens, T. et al. A review of dietary and non-dietary exposure to bisphenol A. Food Chem. Toxicol. 50, 3725–3740 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Franssen, D. et al. Delayed neuroendocrine sexual maturation in female rats after a very low dose of bisphenol A through altered GABAergic neurotransmission and opposing effects of a high dose. Endocrinology 157, 1740–1750 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Kuiri-Hanninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic–pituitary–gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).

    PubMed 

    Google Scholar
     

  • 18.

    Ciofi, P. Phenotypical segregation among female rat hypothalamic gonadotropin-releasing hormone neurons as revealed by the sexually dimorphic coexpression of cholecystokinin and neurotensin. Neuroscience 99, 133–147 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Chachlaki, K. et al. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J. Comp. Neurol. 525, 3177–3189 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Mansuy, V. et al. Phenotypic and molecular characterization of proliferating and differentiated GnRH-expressing GnV-3 cells. Mol. Cell. Endocrinol. 332, 97–105 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Hirai, H. et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 193, 255–261 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Ohinata, K. et al. Central prostaglandin D2 stimulates food intake via the neuropeptide Y system in mice. FEBS Lett. 582, 679–684 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Tokudome, S. et al. Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis. J. Clin. Invest. 119, 1477–1488 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kato, M., Ui-Tei, K., Watanabe, M. & Sakuma, Y. Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144, 5118–5125 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Ma, Y. J., Junier, M. P., Costa, M. E. & Ojeda, S. R. Transforming growth factor-alpha gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 9, 657–670 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Rage, F., Lee, B. J., Ma, Y. J. & Ojeda, S. R. Estradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-to-neuron signaling pathway. J. Neurosci. 17, 9145–9156 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Lomniczi, A., Wright, H. & Ojeda, S. R. Epigenetic regulation of female puberty. Front. Neuroendocrinol. 36, 90–107 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Boehm, U., Zou, Z. & Buck, L. B. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Clasadonte, J., Scemes, E., Wang, Z., Boison, D. & Haydon, P. G. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep–wake cycle. Neuron 95, 1365–1380 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Clasadonte, J. et al. Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc. Natl Acad. Sci. USA 108, 16104–16109 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Glanowska, K. M. & Moenter, S. M. Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits. J. Neurophysiol. 106, 3073–3081 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Dziedzic, B. et al. Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain. J. Neurosci. 23, 915–926 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Prevot, V. et al. Normal female sexual development requires neuregulin-ErbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Paul, A., Chaker, Z. & Doetsch, F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356, 1383–1386 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Sandau, U. S. et al. SynCAM1, a synaptic adhesion molecule, is expressed in astrocytes and contributes to ErbB4 receptor-mediated control of female sexual development. Endocrinology 152, 2364–2376 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Sandau, U. S. et al. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus. Endocrinology 152, 2353–2363 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Allen, N. J. & Eroglu, C. Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J. P. & Zorec, R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J. 35, 239–257 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kofuji, P. & Araque, A. G-protein-coupled receptors in astrocyte–neuron communication. Neuroscience 456, 71–84 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Papouin, T., Dunphy, J. M., Tolman, M., Dineley, K. T. & Haydon, P. G. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 94, 840–854 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Mu, Y. et al. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178, 27–43 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Bourguignon, J. P., Gerard, A., Alvarex-Gonzalez, M. L., Fawe, L. & Franchimont, P. Gonadal-independent developmental changes in activation of N-methyl-d-aspartate receptors involved in gonadotropin-releasing hormone secretion. Neuroendocrinology 55, 634–641 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Carbone, S., Szwarcfarb, B., Otero Losada, M. E. & Moguilevsky, J. A. Effects of ovarian steroids on the gonadotropin response to N-methyl-d-aspartate and on hypothalamic excitatory amino acid levels during sexual maturation in female rats. Endocrinology 130, 1365–1370 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    DeFazio, R. A., Heger, S., Ojeda, S. R. & Moenter, S. M. Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol. Endocrinol. 16, 2872–2891 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Berg, T., Silveira, M. A. & Moenter, S. M. Prepubertal development of GABAergic transmission to gonadotropin-releasing hormone neurons and postsynaptic response are altered by prenatal androgenization. J. Neurosci. 38, 2283–2293 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127, 185–197 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Veiga-Lopez, A., Beckett, E. M., Abi Salloum, B., Ye, W. & Padmanabhan, V. Developmental programming: prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep. Toxicol. Appl. Pharmacol. 279, 119–128 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Rasier, G. et al. Mechanisms of interaction of endocrine-disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. Toxicol. Sci. 102, 33–41 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Muncke, J. et al. Impacts of food contact chemicals on human health: a consensus statement. Environ. Health 19, 25 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    O’Brien, E., Dolinoy, D. C. & Mancuso, P. Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J. Immunotoxicol. 11, 205–212 (2014).

    PubMed 

    Google Scholar
     

  • 60.

    Lamartiniere, C. A., Jenkins, S., Betancourt, A. M., Wang, J. & Russo, J. Exposure to the endocrine disruptor bisphenol A alters susceptibility for mammary cancer. Horm. Mol. Biol. Clin. Investig. 5, 45–52 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Burrows, R. C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Gensburger, C., Labourdette, G. & Sensenbrenner, M. Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett. 217, 1–5 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Fujioka, H. et al. Generation of transgenic rats expressing enhanced green fluorescent protein in gonadotropin-releasing hormone neurons. J. Reprod. Dev. 49, 523–529 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press New York, 1982).

  • 65.

    Ojeda, S. R. & Ramirez, V. D. Automatic control of LH and FSH secretion by short feedback circuits in immature rats. Endocrinology 84, 786–797 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Golde, W. T., Gollobin, P. & Rodriguez, L. L. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim. 34, 39–43 (2005).


    Google Scholar
     

  • 67.

    Altwegg-Boussac, T., Chavez, M., Mahon, S. & Charpier, S. Excitability and responsiveness of rat barrel cortex neurons in the presence and absence of spontaneous synaptic activity in vivo. J. Physiol. 592, 3577–3595 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Salvi, R. et al. Gonadotropin-releasing hormone-expressing neurons immortalized conditionally are activated by insulin: implication of the mitogen-activated protein kinase pathway. Endocrinology 147, 816–826 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Swanson, L. W. Structure of the Rat Brain (Elsevier Science Publishers, Amsterdam, 2004).

  • 70.

    Lee, W. S., Smith, M. S. & Hoffman, G. E. Luteinizing hormone-releasing hormone neurons express Fos protein during the proestrous surge of luteinizing hormone. Proc. Natl Acad. Sci. USA 87, 5163–5167 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Abercrombie, M. Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Tata, B. et al. Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat. Med. 24, 834–846 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Smyth, G. K. Limma: linear models for microarray data. in Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds. Gentleman, R. et al.) 397–420 (Springer, New York, 2005).

  • 75.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Vanacker, C. et al. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J. 39, e104633 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button