Nature Neuroscience

Large-scale neural recordings call for new insights to link brain and behavior

  • 1.

    Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. Biophys. J. 7, 391–418 (1967).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Sompolinsky, H., Yoon, H., Kang, K. & Shamir, M. Population coding in neuronal systems with correlated noise. Phys. Rev. E 64, 051904 (2001).

    CAS 

    Google Scholar
     

  • 4.

    Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory. (Wiley, 1949).

  • 5.

    Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex. (Cambridge Univ. Press, 1991).

  • 6.

    Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & Josić, K. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Barlow, H. in Sensory Communication (ed. Rosenblith, W. A.) 217–234 (MIT Press, 1961).

  • 9.

    Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    PubMed 

    Google Scholar
     

  • 13.

    Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Li, P. H. et al. Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings. J. Neurosci. 35, 4663–4675 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Siegle, J. H. et al. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 10, e69068 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Humphries, M. The Spike: An Epic Journey through the Brain in 2.1 Seconds (Princeton Univ. Press, 2021).

  • 20.

    de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2020).

    PubMed 

    Google Scholar
     

  • 21.

    Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a ‘dark matter’ problem in neuroscience? J. Comp. Physiol. A 192, 777–784 (2006).


    Google Scholar
     

  • 22.

    Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    CAS 

    Google Scholar
     

  • 24.

    Salkoff, D. B., Zagha, E., McCarthy, E. & McCormick, D. A. Movement and performance explain widespread cortical activity in a visual detection task. Cereb. Cortex 30, 421–437 (2020).

    PubMed 

    Google Scholar
     

  • 25.

    Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Roth, M. M. et al. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19, 299–307 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Dolensek, N., Gehrlach, D. A., Klein, A. S. & Gogolla, N. Facial expressions of emotion states and their neuronal correlates in mice. Science 368, 89–94 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Pang, R., Lansdell, B. J. & Fairhall, A. L. Dimensionality reduction in neuroscience. Curr. Biol. 26, R656–R660 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Ni, A., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention reveal a general relationship between population activity and behavior. Science 359, 463–465 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat. Neurosci. 23, 1410–1420 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Kato, S. et al. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 163, 656–669 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Briggman, K. L., Abarbanel, H. D. I. & Kristan, W. B. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Gao, P. et al. A theory of multineuronal dimensionality, dynamics and measurement. Preprint at bioRxiv https://doi.org/10.1101/214262 (2017).

  • 40.

    Humphries, M. D. Strong and weak principles of neural dimension reduction. Neurons Behav. Data Anal. Theory 5, 1–28 (2021).


    Google Scholar
     

  • 41.

    Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 1, 197 (2019).

  • 42.

    Georgopoulos, A., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    CAS 

    Google Scholar
     

  • 43.

    Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    CAS 

    Google Scholar
     

  • 44.

    Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Russo, A. A. et al. Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation. Neuron 107, 745–758.e6 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Saxena, S., Russo, A. A., Cunningham, J. P. & Churchland, M. M. Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. Preprint at bioRxiv https://doi.org/10.1101/2021.02.01.429168 (2021).

  • 47.

    Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Constantinidis, C. et al. Persistent spiking activity underlies working memory. J. Neurosci. 38, 7020–7028 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl Acad. Sci. USA 114, 394–399 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of sequence generation and memory. Neuron 90, 128–142 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Herrmann, M. J., Hertz, J. A. & Prügel-Bennett, A. Analysis of synfire chains. Netw. Comput. Neural Syst. 6, 403–414 (1995).


    Google Scholar
     

  • 53.

    Ólafsdóttir, F., Bush, D. & Barry, C. The role of hippocampal replay in memory and planning. Curr. Biol. 28, R37–R50 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Ruff, D. A. & Cohen, M. R. Stimulus dependence of correlated variability across cortical areas. J. Neurosci. 36, 7546–7556 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Cowley, B. R. et al. Slow drift of neural activity as a signature of impulsivity in macaque visual and prefrontal cortex. Neuron 108, 551–567.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a aommunication subspace. Neuron 102, 249–259.e4 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Das, A. & Fiete, I. R. Systematic errors in connectivity inferred from activity in strongly recurrent networks. Nat. Neurosci. 23, 1286–1296 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Witvliet, D. et al. Connectomes across development reveal principles of brain maturation. Nature 596, 257–261 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Eichler, K. et al. The complete connectome of a learning and memory centre in an insect brain. Nature 548, 175–182 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife https://elifesciences.org/articles/66039 (2021).

  • 65.

    Lu, J. et al. Transforming representations of movement from body- to world-centric space. Nature (in the press).

  • 66.

    Lyu, C., Abbott, L. F. & Maimon, G. A neuronal circuit for vector computation builds an allocentric traveling-direction signal in the Drosophila fan-shaped body. Nature (in the press).

  • 67.

    Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Preprint at bioRxiv https://doi.org/10.1101/2021.02.25.432776 (2021).

  • 68.

    Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Churchland, A. K. & Kiani, R. Three challenges for connecting model to mechanism in decision-making. Curr. Opin. Behav. Sci. 11, 74–80 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Meister, M. L. R., Hennig, J. A. & Huk, A. C. Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J. Neurosci. 33, 2254–2267 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Kubo, R., Toda, M. & Hashitsume, N. Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, 1991).

  • 74.

    Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82, 011903 (2010).


    Google Scholar
     

  • 75.

    Churchland, A. K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Huang, C. et al. Circuit models of low-dimensional shared variability in cortical networks. Neuron 101, 337–348.e4 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Churchland, A. K. & Abbott, L. F. Conceptual and technical advances define a key moment for theoretical neuroscience. Nat. Neurosci. 19, 348–349 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Calvin, W. H. & Stevens, C. F. Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol. 31, 574–587 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10, 373–383 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    White, J. A., Rubinstein, J. T. & Kay, A. R. Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Goris, R. L. T., Movshon, J. A. & Simoncelli, E. P. Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Darshan, R., van Vreeswijk, C. & Hansel, D. Strength of correlations in strongly recurrent neuronal networks. Phys. Rev. X 8, 031072 (2018).

    CAS 

    Google Scholar
     

  • 87.

    Landau, I. D. & Sompolinsky, H. Coherent chaos in a recurrent neural network with structured connectivity. PLoS Comput. Biol. 14, e1006309 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron 99, 609–623.e29 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Gómez-Laberge, C., Smolyanskaya, A., Nassi, J. J., Kreiman, G. & Born, R. T. Bottom-up and top-down input augment the variability of cortical neurons. Neuron 91, 540–547 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Woolley, S. C., Rajan, R., Joshua, M. & Doupe, A. J. Emergence of context-dependent variability across a basal ganglia network. Neuron 82, 208–223 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Hires, A., Gutnisky, D. A., Yu, J., O’Connor, D. H. & Svoboda, K. Low-noise encoding of active touch by layer 4 in the somatosensory cortex. eLife 4, e06619 (2015).


    Google Scholar
     

  • 92.

    Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W. Collective behavior of place and non-place neurons in the hippocampal network. Neuron 96, 1178–1191.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Williamson, R. C., Doiron, B., Smith, M. A. & Yu, B. M. Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction. Curr. Opin. Neurobiol. 55, 40–47 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Musall, S., Urai, A. E., Sussillo, D. & Churchland, A. K. Harnessing behavioral diversity to understand neural computations for cognition. Curr. Opin. Neurobiol. 58, 229–238 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Juavinett, A. L., Erlich, J. C. & Churchland, A. K. Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility. Curr. Opin. Neurobiol. 49, 42–50 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Chen, X. et al. Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish. Neuron 100, 876–890.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93–104 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Ji, N. et al. A neural circuit for flexible control of persistent behavioral states. eLife 10, e62889 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Kaplan, H. S., Salazar Thula, O., Khoss, N. & Zimmer, M. Nested neuronal dynamics orchestrate a behavioral hierarchy across timescales. Neuron 105, 562–576.e9 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Hallinen, K. M. et al. Decoding locomotion from population neural activity in moving C. elegans. eLife 10, e66135 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Bargmann, C. I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347.e23 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    Couto, J. et al. Spatially segregated responses to visuo-tactile stimuli in mouse neocortex during active sensation. Preprint at bioRxiv https://doi.org/10.1101/199364 (2019).

  • 111.

    Bos, H., Oswald, A.-M. & Doiron, B. Untangling stability and gain modulation in cortical circuits with multiple interneuron classes. Preprint at bioRxiv https://doi.org/10.1101/2020.06.15.148114 (2020).

  • 112.

    Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).

    PubMed 

    Google Scholar
     

  • 113.

    Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Yamamoto, W. & Yuste, R. Whole-body imaging of neural and muscle activity during behavior in Hydra vulgaris: effect of osmolarity on contraction bursts. eNeuro https://doi.org/10.1101/2019.12.20.883835 (2020).

  • 115.

    Mann, K., Gallen, C. L. & Clandinin, T. R. Whole-brain calcium imaging reveals an intrinsic functional network in Drosophila. Curr. Biol. 27, 2389–2396.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Aimon, S. et al. Fast near-whole–brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 17, e2006732 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Marblestone, A. H. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 7, 134 (2013).


    Google Scholar
     

  • 118.

    Kleinfeld, D. et al. Can one concurrently record electrical spikes from every neuron in a mammalian brain? Neuron 103, 1005–1015 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Stevenson, I. H. & Kording, K. P. How advances in neural recording affect data analysis. Nat. Neurosci. 14, 139–142 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

  • 121.

    Juavinett, A. L., Bekheet, G. & Churchland, A. K. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, e47188 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 122.

    Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1074–E1081 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Sofroniew, N. J. Q&A: the brain under a mesoscope: the forest and the trees. BMC Biol. 15, 82 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 125.

    Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in neuronal population recordings. Nat. Neurosci. 19, 1165–1174 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Magland, J. et al. SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters. eLife 9, e55167 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Demas, J. et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat. Methods 18, 1103–1111 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Aharoni, D., Khakh, B. S., Silva, A. J. & Golshani, P. All the light that we can see: a new era in miniaturized microscopy. Nat. Methods 16, 11–13 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Najafi, F. et al. Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning. Neuron 105, 165–179.e8 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Huang, L. et al. Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice. eLife 10, e51675 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Brennan, C. & Proekt, A. A quantitative model of conserved macroscopic dynamics predicts future motor commands. eLife 8, e46814 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Costa, A. C., Ahamed, T. & Stephens, G. J. Adaptive, locally linear models of complex dynamics. Proc. Natl Acad. Sci. USA 116, 1501–1510 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Linderman, S., Nichols, A., Blei, D., Zimmer, M. & Paninski, L. Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural activity in C. elegans. Preprint at bioRxiv https://doi.org/10.1101/621540 (2019).

  • 138.

    Fieseler, C., Zimmer, M. & Kutz, N. Unsupervised learning of control signals and their encodings in Caenorhabditis elegans whole-brain recordings. J. R. Soc. Interface 17, 20200459 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Venkatachalam, V. et al. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1082–E1088 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, e28158 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 141.

    Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Symvoulidis, P. et al. NeuBtracker—imaging neurobehavioral dynamics in freely behaving fish. Nat. Methods 14, 1079–1082 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 143.

    Yemini, E. et al. NeuroPAL: a multicolor atlas for whole-brain neuronal identification in C. elegans. Cell 184, 272–288.e11 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 144.

    Machado, A. S., Darmohray, D. M., Fayad, J., Marques, H. G. & Carey, M. R. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. eLife 4, e07892 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Batty, E. et al. BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos. in Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 15680–15691 (Curran, 2019).

  • 149.

    Calhoun, A. J., Pillow, J. W. & Murthy, M. Unsupervised identification of the internal states that shape natural behavior. Nat. Neurosci. 22, 2040–2049 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    The International Brain Laboratory et al. Standardized and reproducible measurement of decision-making in mice. eLife 10, e63711 (2021).

    PubMed Central 

    Google Scholar
     

  • 152.

    Dulac, C., O’Connell, L. A. & Wu, Z. Neural control of maternal and paternal behaviors. Science 345, 765–770 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258–263 (2021).

    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Back to top button