Nature Neuroscience

Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension

  • Levine, D. A., Springer, M. V. & Brodtmann, A. Blood pressure and vascular cognitive impairment. Stroke 53, 1104–1113 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muntner, P. et al. Blood pressure control among us adults, 2009 to 2012 through 2017 to 2020. Hypertension 79, 1971–1980 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carey, R. M., Sakhuja, S., Calhoun, D. A., Whelton, P. K. & Muntner, P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension 73, 424–431 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, J. D. et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321, 553–561 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, A. J. S. & Werring, D. J. New insights into cerebrovascular pathophysiology and hypertension. Stroke 53, 1054–1064 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iadecola, C. & Gottesman, R. F. Neurovascular and cognitive dysfunction in hypertension: epidemiology, pathobiology and treatment. Circ. Res. 124, 1025–1044 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, Y. S. et al. National Heart, Lung, and Blood Institute Working Group report on salt in human health and sickness: building on the current scientific evidence. Hypertension 68, 281–288 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grobe, J. L. et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension 57, 600–607 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basting, T. & Lazartigues, E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 19, 32 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meade, T. W., Imeson, J. D., Gordon, D. & Peart, W. S. The epidemiology of plasma renin. Clin. Sci. 64, 273–280 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Alderman, M. H. et al. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N. Engl. J. Med. 324, 1098–1104 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, W., Sun, Y., Wang, X. & Niu, K. Elevated serum level of interleukin 17 in a population with prehypertension. J. Clin. Hypertens. 17, 770–774 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Simundic, T. et al. Interleukin 17a and toll-like receptor 4 in patients with arterial hypertension. Kidney Blood Press. Res. 42, 99–108 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic Th17 cells. Nature 496, 518–522 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. Induction of pathogenic Th17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faraco, G. et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J. Cereb. Blood Flow. Metab. 36, 241–252 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopp, C. et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61, 635–640 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated Th17 response. Nat. Neurosci. 21, 240–249 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toda, N., Ayajiki, K. & Okamura, T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharm. Rev. 61, 62–97 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54, e251–e271 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 132, 701–718 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Esplugues, E. et al. Control of Th17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, Y. et al. Il-17-producing vγ4+ γδ T cells require sphingosine 1-phosphate receptor 1 for their egress from the lymph nodes under homeostatic and inflammatory conditions. J. Immunol. 195, 1408–1416 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Malki, K. et al. An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J. Invest Dermatol. 133, 441–451 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikolakopoulou, A. M. et al. Endothelial LPR1 protects against neurodegeneration by blocking cyclophilin A. J. Exp. Med. 218, e20202207 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer abeta peptides. Circ. Res. 121, 258–269 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayd, A. et al. Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur. Neuropsychopharmacol. 34, 50–64 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivan, D. C., Walthert, S., Berve, K., Steudler, J. & Locatelli, G. Dwellers and trespassers: mononuclear phagocytes at the borders of the central nervous system. Front Immunol. 11, 609921 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Bonilla, L. et al. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav. Immun. 95, 489–501 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hohsfield, L. A. et al. Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. J. Neuroinflamm. 17, 279 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chinnery, H. R., Ruitenberg, M. J. & McMenamin, P. G. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J. Neuropathol. Exp. Neurol. 69, 896–909 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Pietrowski, E. et al. Pro-inflammatory effects of interleukin-17a on vascular smooth muscle cells involve NAD(P)H-oxidase derived reactive oxygen species. J. Vasc. Res. 48, 52–58 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e1027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranieri, E., Netti, G. S. & Gigante, M. CTL ELISPOT assay and T cell detection. Methods Mol. Biol. 2325, 65–77 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, H. E., Abrams, K. A. & Siegenthaler, J. A. Techniques for visualizing fibroblast-vessel interactions in the developing and adult CNS. Neurophotonics 9, 021911 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derk, J. et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev. Cell 58, 635–644.e4 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prinz, I., Silva-Santos, B. & Pennington, D. J. Functional development of γδ T cells. Eur. J. Immunol. 43, 1988–1994 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray, E. E. et al. Deficiency in IL-17-committed vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenzie, D. R. et al. lL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun. 8, 15632 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiba, K. et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. J. Immunol. 160, 5037–5044 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enosawa, S., Suzuki, S., Kakefuda, T., Li, X. K. & Amemiya, H. Induction of selective cell death targeting on mature T-lymphocytes in rats by a novel immunosuppressant, FTY720. Immunopharmacology 34, 171–179 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Silva, T. M., Modrick, M. L., Grobe, J. L. & Faraci, F. M. Activation of the central renin-angiotensin system causes local cerebrovascular dysfunction. Stroke 52, 2404–2413 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. & Crowley, S. D. The immune system in hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 79, 1339–1347 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higaki, A., Mahmoud, A. U. M., Paradis, P. & Schiffrin, E. L. Role of interleukin-23/interleukin-17 axis in T-cell mediated actions in hypertension. Cardiovasc Res. 117, 1274–1283 (2020).

    Article 

    Google Scholar
     

  • Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortes-Canteli, M. & Iadecola, C. Alzheimer’s disease and vascular aging: JACC focus seminar. J. Am. Coll. Cardiol. 75, 942–951 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brigas, H. C. et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 36, 109574 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rouch, L. et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 29, 113–130 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, J. et al. Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 19, 61–70 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, D. G., Coffman, T. M. & Wilcox, C. S. Pathophysiology of hypertension: the mosaic theory and beyond. Circ. Res. 128, 847–863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, T., Wang, F., Xu, S. & Huang, J. H. Meningeal immunity: structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav. Immun. 93, 264–276 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, S., Lewis, P., Pevny, L. & McMahon, A. P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, S97–S101 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Belanger, K. M. et al. Greater T regulatory cells in females attenuate DOCA-salt-induced increases in blood pressure versus males. Hypertension 75, 1615–1623 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korvela, M. et al. Quantification of 10 elements in human cerebrospinal fluid from chronic pain patients with and without spinal cord stimulation. J. Trace Elem. Med. Biol. 37, 1–7 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bischoff, K., Lamm, C., Erb, H. N. & Hillebrandt, J. R. The effects of formalin fixation and tissue embedding of bovine liver on copper, iron, and zinc analysis. J. Vet. Diagn. Invest. 20, 220–224 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Capone, C. et al. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin ii precedes the development of hypertension. Am. J. Physiol. Heart Circ. Physiol. 300, H397–H407 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kober, F. et al. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn. Reson. Med. 51, 62–67 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Deacon, R. M. Assessing nest building in mice. Nat. Protoc. 1, 1117–1119 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brea, D. et al. Stroke affects intestinal immune cell trafficking to the central nervous system. Brain Behav. Immun. 96, 295–302 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louveau, A., Filiano, A. & Kipnis, J. Meningeal whole mount preparation and characterization of neural cells by flow cytometry. Curr. Protoc. Immunol. 121, e50 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borst, K. & Prinz, M. Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathol. 30, 1192–1207 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes, N. F. & Velloso, L. A. Perivascular macrophages in high-fat diet-induced hypothalamic inflammation. J. Neuroinflamm. 19, 136 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, L. et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc. Natl Acad. Sci. USA 108, 5063–5068 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudick, R. A., Zirretta, D. K. & Herndon, R. M. Clearance of albumin from mouse subarachnoid space: a measure of CSF bulk flow. J. Neurosci. Methods 6, 253–259 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, N. K. et al. An improved method for collection of cerebrospinal fluid from anesthetized mice. J. Vis. Exp. 19, 56774 (2018).


    Google Scholar
     

  • Nakamoto, H. et al. Angiotensin-(1-7) and nitric oxide interaction in renovascular hypertension. Hypertension 25, 796–802 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, L. et al. Tau induces PSD95-neuronal nos uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat. Neurosci. 23, 1079–1089 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button