Nature Neuroscience

Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS

  • 1.

    Taylor, J. P., Brown, R. H. Jr & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Tandan, R. & Bradley, W. G. Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18, 271–280 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Saxena, S. & Caroni, P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71, 35–48 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Fujimori, K. et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat. Med. 24, 1579–1589 (2018).

    PubMed 

    Google Scholar
     

  • 5.

    Kiskinis, E. et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14, 781–795 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Kaminski, H. J., Richmonds, C. R., Kusner, L. L. & Mitsumoto, H. Differential susceptibility of the ocular motor system to disease. Ann. N. Y. Acad. Sci. 956, 42–54 (2002).

    PubMed 

    Google Scholar
     

  • 9.

    Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).


    Google Scholar
     

  • 10.

    Kaplan, A. et al. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81, 333–348 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Allodi, I. et al. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Sci. Rep. 6, 25960 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Mazzoni, E. O. et al. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat. Neurosci. 16, 1219–1227 (2013).


    Google Scholar
     

  • 13.

    Allodi, I. et al. Modeling motor neuron resilience in ALS using stem cells. Stem Cell Reports 12, 1329–1341 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D. & Mattson, M. P. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 52, 448–457 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Theofilopoulos, S. et al. Cholestenoic acids regulate motor neuron survival via liver X receptors. J. Clin. Invest. 124, 4829–4842 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.-F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Prakash, N. et al. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development 136, 2545–2555 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hasan, K. B., Agarwala, S. & Ragsdale, C. W. PHOX2A regulation of oculomotor complex nucleogenesis. Development 137, 1205–1213 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Deng, Q. et al. Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 138, 3399–3408 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Nakano, M. et al. Homozygous mutations in ARIX (PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat. Genet. 29, 315–320 (2001).


    Google Scholar
     

  • 21.

    Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    PubMed Central 

    Google Scholar
     

  • 23.

    Tang, M., Luo, S. X., Tang, V. & Huang, E. J. Temporal and spatial requirements of Smoothened in ventral midbrain neuronal development. Neural Dev. 8, 8 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Danielian, P. S. & McMahon, A. P. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334 (1996).


    Google Scholar
     

  • 25.

    Tsarovina, K. et al. Essential role of Gata transcription factors in sympathetic neuron development. Development 131, 4775–4786 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Song, M.-R. et al. Islet-to-LMO stoichiometries control the function of transcription complexes that specify motor neuron and V2a interneuron identity. Development 136, 2923–2932 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Lewcock, J. W., Genoud, N., Lettieri, K. & Pfaff, S. L. The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 56, 604–620 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Guidato, S., Barrett, C. & Guthrie, S. Patterning of motor neurons by retinoic acid in the chick embryo hindbrain in vitro. Mol. Cell. Neurosci. 23, 81–95 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Calder, E. L. et al. Retinoic acid-mediated regulation of GLI3 enables efficient motoneuron derivation from human ESCs in the absence of extrinsic SHH activation. J. Neurosci. 35, 11462–11481 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Hedlund, E., Karlsson, M., Osborn, T., Ludwig, W. & Isacson, O. Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. Brain 133, 2313–2330 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Valbuena, G. N. et al. Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol. Neurobiol. 53, 2222–2240 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Xia, J. & Wishart, D. S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinformatics 55, 14.10.1–14.10.91 (2016).


    Google Scholar
     

  • 34.

    Lawton, K. A. et al. Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 362–370 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Jatana, M. et al. Inhibition of NF-κB activation by 5-lipoxygenase inhibitors protects brain against injury in a rat model of focal cerebral ischemia. J. Neuroinflammation 3, 12 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Häfner, A.-K., Kahnt, A. S. & Steinhilber, D. Beyond leukotriene formation–the noncanonical functions of 5-lipoxygenase. Prostaglandins Other Lipid Mediat. 142, 24–32 (2019).

    PubMed 

    Google Scholar
     

  • 37.

    Cao, Y., Pearman, A. T., Zimmerman, G. A., McIntyre, T. M. & Prescott, S. M. Intracellular unesterified arachidonic acid signals apoptosis. Proc. Natl Acad. Sci. USA 97, 11280–11285 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Rizzo, M. T. et al. Induction of apoptosis by arachidonic acid in chronic myeloid leukemia cells. Cancer Res. 59, 5047–5053 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Yang, J. Q., Zhou, Q. X., Liu, B. Z. & He, B. C. Protection of mouse brain from aluminum‐induced damage by caffeic acid. CNS Neurosci. Ther. 14, 10–16 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Bishayee, K. & Khuda-Bukhsh, A. R. 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim. Biophys. Sin. 45, 709–719 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Pergola, C. & Werz, O. 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin. Therapeutic Pat. 20, 355–375 (2010).

    CAS 

    Google Scholar
     

  • 42.

    Xu, Z. et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc. Natl Acad. Sci. USA 110, 7778–7783 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Abdel-Khalik, J. et al. Defective cholesterol metabolism in amyotrophic lateral sclerosis. J. Lipid Res. 58, 267–278 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    An, D. et al. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. eLife 8, e44423 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Kuehne, A. et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59, 359–371 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Lopez-Gonzalez, R. et al. Poly (GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92, 383–391 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Andrus, P. K., Fleck, T. J., Gurney, M. E. & Hall, E. D. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 71, 2041–2048 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Dodge, J. C. et al. Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 112, 8100–8105 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Dodge, J. C. et al. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J. Neurosci. 40, 9137–9147 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Andrés‐Benito, P. et al. Lipid alterations in human frontal cortex in ALS‐FTLD‐TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathol. Appl. Neurobiol. 47, 544–563 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Mohassel, P. et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197–1204 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Das, U. N. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J. Adv. Res. 11, 43–55 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Solomonov, Y., Hadad, N. & Levy, R. Reduction of cytosolic phospholipase A2α upregulation delays the onset of symptoms in SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Neuroinflammation 13, 1–12 (2016).


    Google Scholar
     

  • 55.

    Tallima, H. & El Ridi, R. Arachidonic acid: physiological roles and potential health benefits—a review. J. Adv. Res. 11, 33–41 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Blasco, H. et al. Lipidomics reveals cerebrospinal-fluid signatures of ALS. Sci. Rep. 7, 1–10 (2017).

    CAS 

    Google Scholar
     

  • 57.

    Chaves-Filho, A. B. et al. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci. Rep. 9, 1–14 (2019).

    CAS 

    Google Scholar
     

  • 58.

    West, M. et al. The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaretic acid inhibits tumor necrosis factor-α activation of microglia and extends survival of G93A-SOD1 transgenic mice. J. Neurochem. 91, 133–143 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734 (2011).

    PubMed Central 

    Google Scholar
     

  • 61.

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Gendron, T. F. et al. Poly (GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 9, eaai7866 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Almad, A. A. et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia 64, 1154–1169 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Choi, I. Y. et al. Concordant but varied phenotypes among Duchenne muscular dystrophy patient-specific myoblasts derived using a human iPSC-based model. Cell Rep. 15, 2301–2312 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Riera, M. et al. Establishment and characterization of an iPSC line (FRIMOi001-A) derived from a retinitis pigmentosa patient carrying PDE6A mutations. Stem Cell Res. 35, 101385 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Coyne, A. N. et al. G4C2 repeat RNA initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD. Neuron 107, 1124–1140 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    PubMed Central 

    Google Scholar
     

  • 69.

    Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    PubMed Central 

    Google Scholar
     

  • 70.

    Qi, Y. et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat. Biotechnol. 35, 154–163 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Lee, H. et al. Slit and Semaphorin signaling governed by Islet transcription factors positions motor neuron somata within the neural tube. Exp. Neurol. 269, 17–27 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Ng, S.-Y. et al. Genome-wide RNA-seq of human motor neurons implicates selective ER stress activation in spinal muscular atrophy. Cell Stem Cell 17, 569–584 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    McCarthy, D. J. & Smyth, G. K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25, 765–771 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Eoh, H. & Rhee, K. Y. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110, 6554–6559 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Lee, S.-K., Jurata, L. W., Funahashi, J., Ruiz, E. C. & Pfaff, S. L. Analysis of embryonic motoneuron gene regulation: derepression of general activators function in concert with enhancer factors. Development 131, 3295–3306 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Bai, G. et al. Presenilin-dependent receptor processing is required for axon guidance. Cell 144, 106–118 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Ludolph, A. C. et al. Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph. Lateral Scler. 11, 38–45 (2010).

    PubMed 

    Google Scholar
     

  • 84.

    Kim, K.-T. et al. ISL1-based LIM complexes control Slit2 transcription in developing cranial motor neurons. Sci. Rep. 6, 36491 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Ritson, G. P. et al. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci. 30, 7729–7739 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Xia, J. & Wishart, D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010).

    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button