Nature Neuroscience

The cerebellum directly modulates the substantia nigra dopaminergic activity

  • Kelly, R. M. & Strick, P. L. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog. Brain Res. 143, 449–459 (2004).

    PubMed 

    Google Scholar
     

  • Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Percheron, G., Francois, C., Talbi, B., Yelnik, J. & Fenelon, G. The primate motor thalamus. Brain Res. Brain Res. Rev. 22, 93–181 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Person, A. L., Gale, S. D., Farries, M. A. & Perkel, D. J. Organization of the songbird basal ganglia, including area X. J. Comp. Neurol. 508, 840–866 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ichinohe, N., Mori, F. & Shoumura, K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 880, 191–197 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshi, E., Tremblay, L., Feger, J., Carras, P. L. & Strick, P. L. The cerebellum communicates with the basal ganglia. Nat. Neurosci. 8, 1491–1493 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bostan, A. C., Dum, R. P. & Strick, P. L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 17, 241–254 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bostan, A. C., Dum, R. P. & Strick, P. L. The basal ganglia communicate with the cerebellum. Proc. Natl Acad. Sci. USA 107, 8452–8456 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. H., Fremont, R., Arteaga-Bracho, E. E. & Khodakhah, K. Short latency cerebellar modulation of the basal ganglia. Nat. Neurosci. 17, 1767–1775 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snider, R. S., Maiti, A. & Snider, S. R. Cerebellar pathways to ventral midbrain and nigra. Exp. Neurol. 53, 714–728 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nieoullon, A. & Dusticier, N. Changes in dopamine release in caudate nuclei and substantia nigrae after electrical stimulation of the posterior interposate nucleus of cat cerebellum. Neurosci. Lett. 17, 167–172 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nieoullon, A., Cheramy, A. & Glowinski, J. Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res. 148, 143–152 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carpenter, M. B. Lesions of the fastigial nuclei in the rhesus monkey. Am. J. Anat. 104, 1–33 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

  • Watabe-Uchida, M., Zhu, L. S., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujita, H., Kodama, T. & du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 9, e58613 (2020).

  • Kwon, H. G. & Jang, S. H. Differences in neural connectivity between the substantia nigra and ventral tegmental area in the human brain. Front. Hum. Neurosci. 8, 41 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milardi, D. et al. Extensive direct subcortical cerebellum–basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front. Neuroanat. 10, 29 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thach, W. T. Cerebellar output: properties, synthesis and uses. Brain Res. 40, 89–102 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anden, N. E., Hfuxe, K., Hamberger, B. & Hokfelt, T. A quantitative study on the nigro-neostriatal dopamine neuron system in the rat. Acta Physiol. Scand. 67, 306–312 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Covey, D. P. & Garris, P. A. Using fast-scan cyclic voltammetry to evaluate striatal dopamine release elicited by subthalamic nucleus stimulation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 3306–3309 (2009).

    PubMed 

    Google Scholar
     

  • Nissbrandt, H. & Carlsson, A. Turnover of dopamine and dopamine metabolites in rat brain: comparison between striatum and substantia nigra. J. Neurochem. 49, 959–967 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

  • Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacey, M. G., Mercuri, N. B. & North, R. A. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J. Neurosci. 9, 1233–1241 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, J. H., Deisseroth, K. & Bolshakov, V. Y. Synaptic encoding of fear extinction in mPFC–amygdala circuits. Neuron 80, 1491–1507 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J. Neurosci. 40, 3250–3267 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reardon, T. R. et al. Rabies virus CVS-N2cΔG strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89, 711–724 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boecker, H., Jankowski, J., Ditter, P. & Scheef, L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Neuroimage 39, 1356–1369 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Silva, J. A., Tecuapetla, F., Paixao, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124, 2131–2146 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmiter, R. D. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann. N.Y. Acad. Sci. 1129, 35–46 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panigrahi, B. et al. Dopamine is required for the neural representation and control of movement vigor. Cell 162, 1418–1430 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, L., Cao, Y., Tokita, K., Heck, D. H. & Boughter, J. D. Jr. Medial cerebellar nuclear projections and activity patterns link cerebellar output to orofacial and respiratory behavior. Front. Neural Circuits 7, 56 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legaria, A. A. et al. Fiber photometry in striatum reflects primarily nonsomatic changes in calcium. Nat. Neurosci. 25, 1124–1128 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, R. J. & Napper, R. M. Quantitative studies on the mammalian cerebellum. Prog. Neurobiol. 36, 437–463 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Napper, R. M. & Harvey, R. J. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274, 168–177 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebner, T. J. & Pasalar, S. Cerebellum predicts the future motor state. Cerebellum 7, 583–588 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, M. Error detection and representation in the olivo–cerebellar system. Front. Neural Circuits 7, 1 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerminara, N. L., Apps, R. & Marple-Horvat, D. E. An internal model of a moving visual target in the lateral cerebellum. J. Physiol. 587, 429–442 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhanpuri, N. H., Okamura, A. M. & Bastian, A. J. Predicting and correcting ataxia using a model of cerebellar function. Brain 137, 1931–1944 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhanpuri, N. H., Okamura, A. M. & Bastian, A. J. Predictive modeling by the cerebellum improves proprioception. J. Neurosci. 33, 14301–14306 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhanpuri, N. H., Okamura, A. M. & Bastian, A. J. Active force perception depends on cerebellar function. J. Neurophysiol. 107, 1612–1620 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Therrien, A. S. & Bastian, A. J. Cerebellar damage impairs internal predictions for sensory and motor function. Curr. Opin. Neurobiol. 33, 127–133 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honda, T. et al. Tandem internal models execute motor learning in the cerebellum. Proc. Natl Acad. Sci. USA 115, 7428–7433 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisberger, S. G. Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162, 763–776 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Disturbance of sequential movements in patients with Parkinson’s disease. Brain 110, 361–379 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Pascual-Leone, A., Valls-Sole, J., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology 44, 884–891 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, R., Kumar, S., Garg, R. R. & Lang, A. E. Impairment of motor cortex activation and deactivation in Parkinson’s disease. Clin. Neurophysiol. 112, 600–607 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jahanshahi, M., Brown, R. G. & Marsden, C. D. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain 115, 539–564 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Birkmayer, W. & Hornykiewicz, O. The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat. Disord. 4, 59–60 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hornykiewicz, O. The discovery of dopamine deficiency in the parkinsonian brain. J. Neural Transm. Suppl. https://doi.org/10.1007/978-3-211-45295-0_3 (2006).

  • Hornykiewicz, O. Parkinsonism induced by dopaminergic antagonists. Adv. Neurol. 9, 155–164 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Ehringer, H. & Hornykiewicz, O. [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]. Klin. Wochenschr. 38, 1236–1239 (1960).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, S. H., Kessler, K. R., Hefter, H., Cooke, J. D. & Freund, H. J. Role of the cerebellum in visuomotor coordination. I. Delayed eye and arm initiation in patients with mild cerebellar ataxia. Exp. Brain Res. 94, 478–488 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Brunamonti, E. et al. Cerebellar damage impairs executive control and monitoring of movement generation. PLoS ONE 9, e85997 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, G. The cerebellum of man. Brain 62, 1–30 (1939).

    Article 

    Google Scholar
     

  • Holmes, G. The symptom of acute cerebellar injuries due to gunshot wounds. Brain 40, 461–535 (1917).

    Article 

    Google Scholar
     

  • Trouche, E. & Beaubaton, D. Initiation of a goal-directed movement in the monkey. Role of the cerebellar dentate nucleus. Exp. Brain Res. 40, 311–321 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer-Lohmann, J., Hore, J. & Brooks, V. B. Cerebellar participation in generation of prompt arm movements. J. Neurophysiol. 40, 1038–1050 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, A. D. & Brooks, V. B. Parallel pathways for movement initiation of monkeys. Exp. Brain Res. 45, 328–332 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsujimoto, T., Gemba, H. & Sasaki, K. Effect of cooling the dentate nucleus of the cerebellum on hand movement of the monkey. Brain Res. 629, 1–9 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiney, S. A., Kim, J., Augustine, G. J. & Medina, J. F. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J. Neurosci. 34, 2321–2330 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortier, P. A., Kalaska, J. F. & Smith, A. M. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J. Neurophysiol. 62, 198–211 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey, R. J., Porter, R. & Rawson, J. A. Discharges of intracerebellar nuclear cells in monkeys. J. Physiol. 297, 559–580 (1979).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thach, W. T. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J. Neurophysiol. 33, 527–536 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohmae, S., Kunimatsu, J. & Tanaka, M. Cerebellar roles in self-timing for sub- and supra-second intervals. J. Neurosci. 37, 3511–3522 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thach, W. T. Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res. 88, 233–241 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heman, P. et al. Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys. Histol. Histopathol. 27, 89–94 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Necchi, D., Soldani, C., Ronchetti, F., Bernocchi, G. & Scherini, E. MPTP-induced increase in c-Fos- and c-Jun-like immunoreactivity in the monkey cerebellum. Eur. J. Histochem. 48, 385–392 (2004).

    PubMed 

    Google Scholar
     

  • Rascol, O. et al. The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120, 103–110 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, T. & Hallett, M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128, 2250–2259 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Cerasa, A. et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res. Bull. 71, 259–269 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, H., Xu, X., Zhao, Y., Long, D. & Zhang, M. Altered brain activation and connectivity in early Parkinson disease tactile perception. AJNR Am. J. Neuroradiol. 32, 1969–1974 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinu, K. & Monchi, O. Cortico–basal ganglia and cortico–cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav. Neurosci. 127, 222–236 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Tuovinen, N. et al. The reorganization of functional architecture in the early-stages of Parkinson’s disease. Parkinsonism Relat. Disord. 50, 61–68 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bologna, M. et al. Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson’s disease. Parkinsonism Relat. Disord. 21, 1061–1066 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Brusa, L. et al. Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson’s disease patients. Parkinsonism Relat. Disord. 18, 59–62 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ferrucci, R. et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum 15, 43–47 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, G. et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73, 113–119 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minks, E., Marecek, R., Pavlik, T., Ovesna, P. & Bares, M. Is the cerebellum a potential target for stimulation in Parkinson’s disease? Results of 1-Hz rTMS on upper limb motor tasks. Cerebellum 10, 804–811 (2011).

  • Teixeira, M. J. et al. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology 85, 2075–2076 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sokal, P., Rudas, M., Harat, M., Szylberg, L. & Zielinski, P. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin. Neurol. Neurosurg. 135, 62–68 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Prudente, C. N., Hess, E. J. & Jinnah, H. A. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience 260, 23–35 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribot, B. et al. Dystonia and dopamine: from phenomenology to pathophysiology. Prog. Neurobiol. 182, 101678 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schultz, W. Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 18, 23–32 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volkow, N. D. et al. Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. Neuroimage 32, 1782–1792 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thoma, P., Bellebaum, C., Koch, B., Schwarz, M. & Daum, I. The cerebellum is involved in reward-based reversal learning. Cerebellum 7, 433–443 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Miquel, M., Gil-Miravet, I. & Guarque-Chabrera, J. The cerebellum on cocaine. Front. Syst. Neurosci. 14, 586574 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miquel, M., Toledo, R., Garcia, L. I., Coria-Avila, G. A. & Manzo, J. Why should we keep the cerebellum in mind when thinking about addiction? Curr. Drug Abuse Rev. 2, 26–40 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miquel, M. et al. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci. Biobehav. Rev. 60, 1–11 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z. & Borsook, D. The cerebellum and addiction: insights gained from neuroimaging research. Addict. Biol. 19, 317–331 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guarque-Chabrera, J., Gil-Miravet, I., Olucha-Bordonau, F., Melchor-Eixea, I. & Miquel, M. When the front fails, the rear wins. Cerebellar correlates of prefrontal dysfunction in cocaine-induced memory in male rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 112, 110429 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohmae, S. & Medina, J. F. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat. Neurosci. 18, 1798–1803 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heffley, W. et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat. Neurosci. 21, 1431–1441 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heffley, W. & Hull, C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife 8, e46764 (2019).

  • Kostadinov, D. & Hausser, M. Reward signals in the cerebellum: origins, targets, and functional implications. Neuron 110, 1290–1303 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kostadinov, D., Beau, M., Pozo, M. B. & Hausser, M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat. Neurosci. 22, 950–962 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larry, N., Yarkoni, M., Lixenberg, A. & Joshua, M. Cerebellar climbing fibers encode expected reward size. eLife 8, e46870 (2019).

  • Shuster, S. A. et al. The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. Proc. Natl Acad. Sci. USA 118, e2101826118 (2021).

  • Gao, Z. et al. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron 89, 645–657 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bina, L., Romano, V., Hoogland, T. M., Bosman, L. W. J. & De Zeeuw, C. I. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep. 37, 110116 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 363, eaav0581 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothermel, M., Brunert, D., Zabawa, C., Diaz-Quesada, M. & Wachowiak, M. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J. Neurosci. 33, 15195–15206 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • du Hoffmann, J. & Nicola, S. M. Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens. J. Neurosci. 34, 14349–14364 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Z. et al. A cortico–cerebellar loop for motor planning. Nature 563, 113–116 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manto, M. & Oulad Ben Taib, N. Cerebellar nuclei: key roles for strategically located structures. Cerebellum 9, 17–21 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beier, K. T. et al. Topological organization of ventral tegmental area connectivity revealed by viral–genetic dissection of input–output relations. Cell Rep. 26, 159–167 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Elsevier, 2008).

  • Lin, J. Y., Lin, M. Z., Steinbach, P. & Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 1183, 221–242 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berretta, N., Bernardi, G. & Mercuri, N. B. Firing properties and functional connectivity of substantia nigra pars compacta neurones recorded with a multi-electrode array in vitro. J. Physiol. 588, 1719–1735 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button