Nature Neuroscience

The cerebellum modulates thirst | Nature Neuroscience

  • Zimmerman, C. A., Leib, D. E. & Knight, Z. A. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leib, D. E., Zimmerman, C. A. & Knight, Z. A. Thirst. Curr. Biol. 26, R1260–R1265 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augustine, V. et al. Temporally and spatially distinct thirst satiation signals. Neuron 103, 242–249.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, C. A. et al. From thirst to satiety: the anterior mid-cingulate cortex and right posterior insula indicate dynamic changes in incentive value. Front Hum. Neurosci. 11, 234 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saker, P. et al. Regional brain responses associated with drinking water during thirst and after its satiation. Proc. Natl Acad. Sci. USA 111, 5379–5384 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koziol, L. F. et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13, 151–177 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sader, M., Waiter, G. D. & Williams, J. H. G. The cerebellum plays more than one role in the dysregulation of appetite: review of structural evidence from typical and eating disorder populations. Brain Behav. 13, e3286 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumann, O. & Mattingley, J. B. Cerebellum and emotion processing. Adv. Exp. Med Biol. 1378, 25–39 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manto, M. et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11, 457–487 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stroh, M. A. et al. NCB5OR deficiency in the cerebellum and midbrain leads to dehydration and alterations in thirst response, fasted feeding behavior, and voluntary exercise in mice. Cerebellum 17, 152–164 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, L. M. et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc. Natl Acad. Sci. USA 97, 2332–2336 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duerrschmid, C. et al. Asprosin is a centrally acting orexigenic hormone. Nat. Med. 23, 1444–1453 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, B. et al. Asprosin promotes feeding through SK channel-dependent activation of AgRP neurons. Sci. Adv. 9, eabq6718 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, I. et al. Protein tyrosine phosphatase receptor ẟ serves as the orexigenic asprosin receptor. Cell Metab. 34, 549–563 e8 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, I. et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. eLife 10, e63784 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, I. & Chopra, A. R. Overexpression and ELISA-based detection of asprosin in cultured cells and mice. STAR Protoc. 3, 101762 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shishikura, M. et al. Expression of receptor protein tyrosine phosphatase ẟ, PTPẟ, in mouse central nervous system. Brain Res. 1642, 244–254 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhl, G. R. & Martinez, M. J. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann. NY Acad. Sci. 1451, 112–129 (2019).

  • Takahashi, H. & Craig, A. M. Protein tyrosine phosphatases PTPẟ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36, 522–534 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. Cerebellar modules operate at different frequencies. eLife 3, e02536 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, M. et al. Anatomical evidence for a direct projection from Purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front. Neural Circuits 12, 6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pisano, T. J. et al. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 36, 109721 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Britt, J. P., McDevitt, R. A. & Bonci, A. Use of channelrhodopsin for activation of CNS neurons. Curr. Protoc. Neurosci. 10.1002/0471142301.ns0216s58.

  • Boughter, J. D. Jr. et al. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS ONE 7, e38169 (2012).

  • Uchizono, K. Excitation and inhibition in the nervous system. No Shinkei Geka 6, 7–16 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Medina, J. F. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr. Opin. Neurobiol. 21, 616–622 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasegbon, A. & Hamdy, S. The role of the cerebellum in swallowing. Dysphagia 38, 497–509 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Darmohray, D. M. et al. Spatial and temporal locomotor learning in mouse cerebellum. Neuron 102, 217–231.e4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sathyanesan, A., Kratimenos, P. & Gallo, V. Disruption of neonatal Purkinje cell function underlies injury-related learning deficits. Proc. Natl Acad. Sci. USA 118, e2017876118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinueza Veloz, M. F. et al. Cerebellar control of gait and interlimb coordination. Brain Struct. Funct. 220, 3513–3536 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Basile, A. S. & Dunwiddie, T. V. Norepinephrine elicits both excitatory and inhibitory responses from Purkinje cells in the in vitro rat cerebellar slice. Brain Res. 296, 15–25 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badura, A. et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron 78, 700–713 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt, G. R. et al. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75, 1806–1814 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmerman, C. A. et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 537, 680–684 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bichet, D. G. Vasopressin at central levels and consequences of dehydration. Ann. Nutr. Metab. 68, 19–23 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Low, A. Y. T. et al. Reverse-translational identification of a cerebellar satiation network. Nature 600, 269–273 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapoport, M., van Reekum, R. & Mayberg, H. The role of the cerebellum in cognition and behavior: a selective review. J. Neuropsychiatry Clin. Neurosci. 12, 193–198 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, B. M. et al. The cerebellum and emotional experience. Neuropsychologia 45, 1331–1341 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Saker, P. et al. Influence of anterior midcingulate cortex on drinking behavior during thirst and following satiation. Proc. Natl Acad. Sci. USA 115, 786–791 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, M. et al. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 598, 214–219 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinley, M. J. & Johnson, A. K. The physiological regulation of thirst and fluid intake. N. Physiol. Sci. 19, 1–6 (2004).


    Google Scholar
     

  • Negrello, M. et al. Quasiperiodic rhythms of the inferior olive. PLoS Comput. Biol. 15, e1006475 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloedel, J. R. & Ebner, T. J. Rhythmic discharge of climbing fibre afferents in response to natural peripheral stimuli in the cat. J. Physiol. 352, 129–146 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llinas, R. & Yarom, Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J. Physiol. 376, 163–182 (1986).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loyola, S. et al. How inhibitory and excitatory inputs gate output of the inferior olive. eLife 12, e83239 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zagha, E., Lang, E. J. & Rudy, B. Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform. J. Neurosci. 28, 1291–1300 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weir, J. B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109, 1–9 (1949).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Can, A. et al. The tail suspension test. J. Vis. Exp. 59, e3769 (2012).


    Google Scholar
     

  • Shoji, H. et al. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol. Brain 9, 11 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonetto, A., Andersson, D. C. & Waning, D. L. Assessment of muscle mass and strength in mice. Bonekey Rep. 4, 732 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouet, V. et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat. Protoc. 4, 1560–1564 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. T. et al. Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson’s disease. Brain Res. 1306, 176–183 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuura, K. et al. Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J. Neurosci. Methods 73, 45–48 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheron, G. et al. Electrophysiological alterations of the Purkinje cells and deep cerebellar neurons in a mouse model of Alzheimer disease (electrophysiology on cerebellum of AD mice). Eur. J. Neurosci. 56, 5547–5563 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White, J. J. et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J. Neurosci. Methods 262, 21–31 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zan, G. Y. et al. Amygdalar κ-opioid receptor-dependent upregulating glutamate transporter 1 mediates depressive-like behaviors of opioid abstinence. Cell Rep. 37, 109913 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Related Articles

    Back to top button