Nature Neuroscience

Ventral striatal islands of Calleja neurons control grooming in mice

  • 1.

    Grillner, S. & Robertson, B. The basal ganglia over 500 million years. Curr. Biol. 26, R1088–R1100 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Burke, D. A., Rotstein, H. G. & Alvarez, V. A. Striatal local circuitry: a new framework for lateral inhibition. Neuron 96, 267–284 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Millhouse, O. E. Granule cells of the olfactory tubercle and the question of the islands of Calleja. J. Comp. Neurol. 265, 1–24 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    De Marchis, S., Fasolo, A. & Puche, A. C. Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J. Comp. Neurol. 476, 290–300 (2004).

    PubMed 

    Google Scholar
     

  • 6.

    Fallon, J. H., Riley, J. N., Sipe, J. C. & Moore, R. Y. The islands of Calleja: organization and connections. J. Comp. Neurol. 181, 375–395 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Meyer, G., Gonzalez-Hernandez, T., Carrillo-Padilla, F. & Ferres-Torres, R. Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. J. Comp. Neurol. 284, 405–428 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Adjei, S. & Wesson, D. W. Laminar and spatial localization of the islands of Calleja in mice. Neuroscience 287, 137–143 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Fallon, J. H., Loughlin, S. E. & Ribak, C. E. The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatopallidal system. J. Comp. Neurol. 218, 91–120 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Hsieh, Y. C. & Puche, A. C. Development of the islands of Calleja. Brain Res. 1490, 52–60 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Hsieh, Y. C. & Puche, A. C. GABA modulation of SVZ-derived progenitor ventral cell migration. Dev. Neurobiol. 75, 791–804 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Martin-Lopez, E., Xu, C., Liberia, T., Meller, S. J. & Greer, C. A. Embryonic and postnatal development of mouse olfactory tubercle. Mol. Cell Neurosci. 98, 82–96 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Suzuki, M., Hurd, Y. L., Sokoloff, P., Schwartz, J. C. & Sedvall, G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 779, 58–74 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Neddens, J. & Buonanno, A. Expression of the neuregulin receptor ErbB4 in the brain of the rhesus monkey (Macaca mulatta). PLoS ONE 6, e27337 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Giessel, A. J. & Datta, S. R. Olfactory maps, circuits and computations. Curr. Opin. Neurobiol. 24, 120–132 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Wesson, D. W. The tubular striatum. J. Neurosci. 40, 7379–7386 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Levant, B. Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Res. 800, 269–274 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Bouthenet, M. L. et al. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564, 203–219 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Li, Y. & Kuzhikandathil, E. V. Molecular characterization of individual D3 dopamine receptor-expressing cells isolated from multiple brain regions of a novel mouse model. Brain Struct. Funct. 217, 809–833 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Landwehrmeyer, B., Mengod, G. & Palacios, J. M. Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res. Mol. Brain Res. 18, 187–192 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Ridray, S. et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur. J. Neurosci. 10, 1676–1686 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Le Moine, C. & Bloch, B. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73, 131–143 (1996).

    PubMed 

    Google Scholar
     

  • 23.

    Novejarque, A., Gutierrez-Castellanos, N., Lanuza, E. & Martinez-Garcia, F. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front. Neuroanat. 5, 54 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Ubeda-Banon, I. et al. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci. 8, 103 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Joyce, J. N. & Gurevich, E. V. D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann. N. Y. Acad. Sci. 877, 595–613 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Inta, D., Meyer-Lindenberg, A. & Gass, P. Alterations in postnatal neurogenesis and dopamine dysregulation in schizophrenia: a hypothesis. Schizophr. Bull. 37, 674–680 (2011).

    PubMed 

    Google Scholar
     

  • 27.

    Calaresu, F. R., Zhang, J., Chitravanshi, V. C. & Mckitrick, D. J. Cardiovascular and single-unit responses elicited by stimulation of the islands of Calleja and by changes in arterial pressure. Brain Res. 655, 45–50 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Meyer, G., Gonzalez-Hernandez, T., Galindo-Mireles, D., Carrillo-Padilla, F. & Ferres-Torres, R. NADPH-d activity in the islands of Calleja: a regulatory system of blood flow to the ventral striatum/pallidum? Neuroreport 5, 1281–1284 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Kalueff, A. V. et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci. 17, 45–59 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Smolinsky, A. N., Bergner, C. L., LaPorte, J. L. & Kalueff, A. V. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In Mood and Anxiety-Related Phenotypes in Mice, Characterirzation Using Behavioral Tests, (ed. Gould, T. D.) 21–36 (Humana Press, 2009).

  • 31.

    Fuccillo, M. V. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 10, 27 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Burguiere, E., Monteiro, P., Mallet, L., Feng, G. & Graybiel, A. M. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr. Opin. Neurobiol. 30, 59–65 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Kalueff, A. V., Aldridge, J. W., LaPorte, J. L., Murphy, D. L. & Tuohimaa, P. Analyzing grooming microstructure in neurobehavioral experiments. Nat. Protoc. 2, 2538–2544 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Berridge, K. C., Fentress, J. C. & Parr, H. Natural syntax rules control action sequence of rats. Behav. Brain Res. 23, 59–68 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Berntson, G. G., Jang, J. F. & Ronca, A. E. Brainstem systems and grooming behaviors. Ann. N. Y. Acad. Sci. 525, 350–362 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Berridge, K. C. Progressive degradation of serial grooming chains by descending decerebration. Behav. Brain Res. 33, 241–253 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Spruijt, B. M., van Hooff, J. A. & Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Alo, R., Avolio, E., Mele, M., Di Vito, A. & Canonaco, M. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J. Neurol. Sci. 351, 46–51 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Hong, W., Kim, D. W. & Anderson, D. J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Dunn, A. J., Berridge, C. W., Lai, Y. I. & Yachabach, T. L. CRF-induced excessive grooming behavior in rats and mice. Peptides 8, 841–844 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Roeling, T. A., Veening, J. G., Peters, J. P., Vermelis, M. E. & Nieuwenhuys, R. Efferent connections of the hypothalamic ‘grooming area’ in the rat. Neuroscience 56, 199–225 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Kruk, M. R. et al. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci. Biobehav. Rev. 23, 163–177 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Dunn, A. J. Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann. N. Y. Acad. Sci. 525, 150–168 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Mangieri, L. R. et al. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat. Commun. 9, 52 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Mu, M. D. et al. A limbic circuitry involved in emotional stress-induced grooming. Nat. Commun. 11, 2261 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Cromwell, H. C. & Berridge, K. C. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J. Neurosci. 16, 3444–3458 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Rapanelli, M., Frick, L., Bito, H. & Pittenger, C. Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proc. Natl Acad. Sci. USA 114, 6599–6604 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Aldridge, J. W., Berridge, K. C. & Rosen, A. R. Basal ganglia neural mechanisms of natural movement sequences. Can. J. Physiol. Pharmacol. 82, 732–739 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat. Protoc. 5, 595–606 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    White, K. A. et al. Glutamatergic neurons in the piriform cortex influence the activity of D1- and D2-type receptor-expressing olfactory tubercle neurons. J. Neurosci. 39, 9546–9559 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Halliwell, J. V. & Horne, A. L. Evidence for enhancement of gap junctional coupling between rat island of Calleja granule cells in vitro by the activation of dopamine D3 receptors. J. Physiol. 506, 175–194 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Ribak, C. E. & Fallon, J. H. The island of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J. Comp. Neurol. 205, 207–218 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Le Foll, B., Diaz, J. & Sokoloff, P. Neuroadaptations to hyperdopaminergia in dopamine D3 receptor-deficient mice. Life Sci. 76, 1281–1296 (2005).

    PubMed 

    Google Scholar
     

  • 60.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Shuen, J. A., Chen, M., Gloss, B. & Calakos, N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J. Neurosci. 28, 2681–2685 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Choi, K., Holly, E. N., Davatolhagh, M. F., Beier, K. T. & Fuccillo, M. V. Integrated anatomical and physiological mapping of striatal afferent projections. Eur. J. Neurosci. 49, 623–636 (2019).

    PubMed 

    Google Scholar
     

  • 64.

    Herman, A. M. et al. A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature 538, 253–256 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Onigbogi, O., Ajayi, A. A. & Ukponmwan, O. E. Mechanisms of chloroquine-induced body-scratching behavior in rats: evidence of involvement of endogenous opioid peptides. Pharmacol. Biochem. Behav. 65, 333–337 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS 

    Google Scholar
     

  • 69.

    Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Gretenkord, S. et al. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLoS Biol. 17, e2006994 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Marom, K. et al. The vomeronasal system can learn novel stimulus response pairings. Cell Rep. 27, 676–684 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Pietroni, N., Tarini, M. & Cignoni, P. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Vis. Comput. Graph. 16, 621–635 (2010).

    PubMed 

    Google Scholar
     

  • 74.

    Stegmaier, J. et al. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks. PLoS ONE 9, e90036 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Bartschat, A., Hubner, E., Reischl, M., Mikut, R. & Stegmaier, J. XPIWIT–an XML pipeline wrapper for the Insight Toolkit. Bioinformatics 32, 315–317 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Schott, B. et al. EmbryoMiner: a new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Comput. Biol. 14, e1006128 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Wright, K. N. & Wesson, D. W. The tubular striatum and nucleus accumbens distinctly represent reward-taking and reward-seeking. J. Neurophysiol. 125, 166–183 (2021).

    PubMed 

    Google Scholar
     

  • 78.

    Gadziola, M. A., Tylicki, K. A., Christian, D. L. & Wesson, D. W. The olfactory tubercle encodes odor valence in behaving mice. J. Neurosci. 35, 4515–4527 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).


    Google Scholar
     

  • 81.

    Esmaeili, V. et al. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 109, 2183–2201 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button