Health Skin

Virtual reality: a powerful technology to provide novel insight into treatment mechanisms of addiction

  • 1.

    Niaura RS, Rohsenow DJ, Binkoff JA, Monti PM, Pedraza M, Abrams DB. Relevance of cue reactivity to understanding alcohol and smoking relapse. J Abnorm Psychol. 1988;97:133–52.

    PubMed 

    Google Scholar
     

  • 2.

    Carter BL, Tiffany ST. Meta-analysis of cue-reactivity in addiction research. Addiction 1999;94:327–40.

    PubMed 

    Google Scholar
     

  • 3.

    Winkler MH, Weyers P, Mucha RF, Stippekohl B, Stark R, Pauli P. Conditioned cues for smoking elicit preparatory responses in healthy smokers. Psychopharmacology. 2011;213:781–9.

    PubMed 

    Google Scholar
     

  • 4.

    Weinland C, Mühle C, Kornhuber J, Lenz B. Body mass index and craving predict 24-month hospital readmissions of alcohol-dependent in-patients following withdrawal. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:300–7.

    PubMed 

    Google Scholar
     

  • 5.

    Stohs ME, Schneekloth TD, Geske JR, Biernacka JM, Karpyak VM. Alcohol craving predicts relapse after residential addiction treatment. Alcohol Alcohol. 2019;54:167–72.

    PubMed 

    Google Scholar
     

  • 6.

    Sliedrecht W, de Waart R, Witkiewitz K, Roozen HG. Alcohol use disorder relapse factors: a systematic review. Psychiatry Res. 2019;278:97–115.

    PubMed 

    Google Scholar
     

  • 7.

    Tiffany ST, Wray JM. The clinical significance of drug craving. Ann NY Acad Sci. 2012;1248:1–17.

    PubMed 

    Google Scholar
     

  • 8.

    Ghiţă A, Teixidor L, Monras M, Ortega L, Mondon S, Gual A, et al. Identifying triggers of alcohol craving to develop effective virtual environments for cue exposure therapy. Front Psychol. 2019;10:74.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Du J, Fan C, Jiang H, Sun H, Li X, Zhao M. Biofeedback combined with cue-exposure as a treatment for heroin addicts. Physiol Behav. 2014;130:34–39.

    PubMed 

    Google Scholar
     

  • 10.

    Schoenberg PL, David AS. Biofeedback for psychiatric disorders: a systematic review. Appl Psychophysiol Biofeedback. 2014;39:109–35.

    PubMed 

    Google Scholar
     

  • 11.

    Wall AM, McKee SA, Hinson RE, Goldstein A. Examining alcohol outcome expectancies in laboratory and naturalistic bar settings: a within-subject experimental analysis. Psychol Addict Behav. 2001;15:219–26.

    PubMed 

    Google Scholar
     

  • 12.

    Traylor AC, Parrish DE, Copp HL, Bordnick PS. Using virtual reality to investigate complex and contextual cue reactivity in nicotine dependent problem drinkers. Addict Behav. 2011;36:1068–75.

    PubMed 

    Google Scholar
     

  • 13.

    Conklin CA, Robin N, Perkins KA, Salkeld RP, McClernon FJ. Proximal versus distal cues to smoke: the effects of environments on smokers’ cue-reactivity. Exp Clin Psychopharmacol. 2008;16:207–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Paris MM, Carter BL, Traylor AC, Bordnick PS, Day SX, Armsworth MW, et al. Cue reactivity in virtual reality: the role of context. Addict Behav. 2011;36:696–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Heilig M, Epstein DH, Nader MA, Shaham Y. Time to connect: bringing social context into addiction neuroscience. Nat Rev Neurosci. 2016;17:592–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Chesworth R, Corbit LH. Recent developments in the behavioural and pharmacological enhancement of extinction of drug seeking. Addict Biol. 2017;22:3–43.

    PubMed 

    Google Scholar
     

  • 17.

    Hone-Blanchet A, Wensing T, Fecteau S. The use of virtual reality in craving assessment and cue-exposure therapy in substance use disorders. Front Hum Neurosci. 2014;8:844.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Salomoni P, Prandi C, Roccetti M, Casanova L, Marchetti L, Marfia G. Diegetic user interfaces for virtual environments with HMDs: a user experience study with oculus rift. J Multimodal Use Interfaces. 2017;11:173–84.


    Google Scholar
     

  • 19.

    Maples-Keller JL, Bunnell BE, Kim SJ, Rothbaum BO. The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders. Harv Rev Psychiatry. 2017;25:103–13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Kothgassner OD, Goreis A, Kafka JX, Van Eickels RL, Plener PL, Felnhofer A. Virtual reality exposure therapy for posttraumatic stress disorder (PTSD): a meta-analysis. Eur J Psychotraumatol. 2019;10:1654782.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Segawa T, Baudry T, Bourla A, Blanc JV, Peretti CS, Mouchabac S, et al. Virtual reality (VR) in assessment and treatment of addictive disorders: a systematic review. Front Neurosci. 2020;13:1409.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Drummond DC. Theories of drug craving, ancient and modern. Addiction 2001;96:33–46.

    PubMed 

    Google Scholar
     

  • 23.

    van Lier HG, Pieterse ME, Schraagen JMC, Postel MG, Vollenbroek-Hutten MMR, de Haan HA, et al. Identifying viable theoretical frameworks with essential parameters for real-time and real world alcohol craving research: a systematic review of craving models. Addiction Res Theory. 2018;26:35–51.


    Google Scholar
     

  • 24.

    Hormes JM, Niemiec MA. Does culture create craving? Evidence from the case of menstrual chocolate craving. PLoS ONE. 2017;12:e0181445.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Thompson-Lake DG, Cooper KN, Mahoney JJ, Bordnick PS, Salas R, Kosten TR, et al. Withdrawal symptoms and nicotine dependence severity predict virtual reality craving in cigarette-deprived smokers. Nicotine Tob Res. 2015;17:796–802.

    PubMed 

    Google Scholar
     

  • 26.

    Bordnick PS, Traylor A, Copp HL, Graap KM, Carter B, Ferrer M, et al. Assessing reactivity to virtual reality alcohol based cues. Addict Behav. 2008;33:743–56.

    PubMed 

    Google Scholar
     

  • 27.

    Ghiţă A, Hernández-Serrano O, Fernández-Ruiz Y Y, Monras M, Ortega L, Mondon S. et al. Cue-elicited anxiety and alcohol craving as indicators of the validity of ALCO-VR software: a virtual reality study. J Clin Med. 2019;8:1153

    PubMed Central 

    Google Scholar
     

  • 28.

    Simon J, Etienne AM, Bouchard S, Quertemont E. Alcohol craving in heavy and occasional alcohol drinkers after cue exposure in a virtual environment: the role of the sense of presence. Front Hum Neurosci. 2020;14:124.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Lee JS, Namkoong K, Ku J, Cho S, Park JY, Choi YK, et al. Social pressure-induced craving in patients with alcohol dependence: application of virtual reality to coping skill training. Psychiatry Investig. 2008;5:239–43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Lee SH, Han DH, Oh S, Lyoo IK, Lee YS, Renshaw PF, et al. Quantitative electroencephalographic (qEEG) correlates of craving during virtual reality therapy in alcohol-dependent patients. Pharm Biochem Behav. 2009;91:393–7.


    Google Scholar
     

  • 31.

    Hernández-Serrano O, Ghiţă A, Figueras-Puigderrajols N, Fernández-Ruiz J, Monras M, Ortega L, et al. Predictors of changes in alcohol craving levels during a virtual reality cue exposure treatment among patients with alcohol use disorder. J Clin Med. 2020;9:3018

    PubMed Central 

    Google Scholar
     

  • 32.

    Ghiţă A, Hernández-Serrano O, Fernández-Ruiz J, Moreno M, Monras M, Ortega L, et al. Attentional bias, alcohol craving, and anxiety implications of the virtual reality cue-exposure therapy in severe alcohol use disorder: a case report. Front Psychol. 2021;12:543586.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Choi JS, Park S, Lee JY, Jung HY, Lee HW, Jin CH, et al. The effect of repeated virtual nicotine cue exposure therapy on the psychophysiological responses: a preliminary study. Psychiatry Investig. 2011;8:155–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Lee JH, Ku J, Kim K, Kim B, Kim IY, Yang BH, et al. Experimental application of virtual reality for nicotine craving through cue exposure. Cyberpsychol Behav. 2003;6:275–80.

    PubMed 

    Google Scholar
     

  • 35.

    Bordnick PS, Graap KM, Copp H, Brooks J, Ferrer M, Logue B. Utilizing virtual reality to standardize nicotine craving research: a pilot study. Addict Behav. 2004;29:1889–94.

    PubMed 

    Google Scholar
     

  • 36.

    Acker J, MacKillop J. Behavioral economic analysis of cue-elicited craving for tobacco: a virtual reality study. Nicotine Tob Res. 2013;15:1409–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Carter BL, Bordnick P, Traylor A, Day SX, Paris M. Location and longing: the nicotine craving experience in virtual reality. Drug Alcohol Depend. 2008;95:73–80.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Ferrer-García M, García-Rodríguez O, Gutiérrez-Maldonado J, Pericot-Valverde I, Secades-Villa R. Efficacy of virtual reality in triggering the craving to smoke: its relation to level of presence and nicotine dependence. Stud Health Technol Inf. 2010;154:123–7.


    Google Scholar
     

  • 39.

    Bordnick PS, Traylor AC, Carter BL, Graap KM. A feasibility study of virtual reality-based coping skills training for nicotine dependence. Res Soc Work Pract. 2012;22:293–300.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Kaganoff E, Bordnick PS, Carter BL. Feasibility of using virtual reality to assess nicotine cue reactivity during treatment. Res Soc Work Pract. 2012;22:159–65.

    PubMed 

    Google Scholar
     

  • 41.

    Lee J, Lim Y, Graham SJ, Kim G, Wiederhold BK, Wiederhold MD, et al. Nicotine craving and cue exposure therapy by using virtual environments. Cyberpsychol Behav. 2004;7:705–13.

    PubMed 

    Google Scholar
     

  • 42.

    Park CB, Choi JS, Park SM, Lee JY, Jung HY, Seol JM, et al. Comparison of the effectiveness of virtual cue exposure therapy and cognitive behavioral therapy for nicotine dependence. Cyberpsychol Behav Soc Netw. 2014;17:262–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Moon J, Lee JH. Cue exposure treatment in a virtual environment to reduce nicotine craving: a functional MRI study. Cyberpsychol Behav. 2009;12:43–45.

    PubMed 

    Google Scholar
     

  • 44.

    Tan H, Chen T, Du J, Li R, Jiang H, Deng CL, et al. Drug-related virtual reality cue reactivity is associated with gamma activity in reward and executive control circuit in methamphetamine use disorders. Arch Med Res. 2019;50:509–17.

    PubMed 

    Google Scholar
     

  • 45.

    Tsai MC, Chung CR, Chen CC, Yeh SC, Chen JY, Lin CH, et al. An intelligent virtual-reality system with multi-model sensing for cue-elicited craving in patients with methamphetamine use disorder. IEEE Trans Biomed Eng. 2021;68:2270–80.

    PubMed 

    Google Scholar
     

  • 46.

    Saladin ME, Brady KT, Graap K, Rothbaum BO. A preliminary report on the use of virtual reality technology to elicit craving and cue reactivity in cocaine dependent individuals. Addict Behav. 2006;31:1881–94.

    PubMed 

    Google Scholar
     

  • 47.

    Bordnick PS, Copp HL, Traylor A, Graap KM, Carter BL, Walton A, et al. Reactivity to cannabis cues in virtual reality environments. J Psychoact Drugs. 2009;41:105–12.


    Google Scholar
     

  • 48.

    Wang YG, Shen ZH, Wu XC. Detection of patients with methamphetamine dependence with cue-elicited heart rate variability in a virtual social environment. Psychiatry Res. 2018;270:382–8.

    PubMed 

    Google Scholar
     

  • 49.

    Wang YG, Liu MH, Shen ZH. A virtual reality counterconditioning procedure to reduce methamphetamine cue-induced craving. J Psychiatr Res. 2019;116:88–94.

    PubMed 

    Google Scholar
     

  • 50.

    Shin YB, Kim JJ, Kim MK, Kyeong S, Jung YH, Eom H, et al. Development of an effective virtual environment in eliciting craving in adolescents and young adults with internet gaming disorder. PLoS ONE. 2018;13:e0195677.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Giroux I, Faucher-Gravel A, St-Hilaire A, Boudreault C, Jacques C, Bouchard S. Gambling exposure in virtual reality and modification of urge to gamble. Cyberpsychol Behav Soc Netw. 2013;16:224–31.

    PubMed 

    Google Scholar
     

  • 52.

    Bouchard S, Robillard G, Giroux I, Jacques C, Loranger C, St-Pierre M, et al. Using virtual reality in the treatment of gambling disorder: the development of a new tool for cognitive behavior therapy. Front Psychiatry. 2017;8:27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Park CB, Park SM, Gwak AR, Sohn BK, Lee JY, Jung HY, et al. The effect of repeated exposure to virtual gambling cues on the urge to gamble. Addict Behav. 2015;41:61–4.

    PubMed 

    Google Scholar
     

  • 54.

    Müller CP, Mühle C, Kornhuber J, Lenz B. Sex-dependent alcohol instrumentalization goals in non-addicted alcohol consumers versus patients with alcohol use disorder: longitudinal change and outcome prediction. Alcohol Clin Exp Res. 2021;45:577–86.

    PubMed 

    Google Scholar
     

  • 55.

    Wheeler RA, Twining RC, Jones JL, Slater JM, Grigson PS, Carelli RM. Behavioral and electrophysiological indices of negative affect predict cocaine self-administration. Neuron 2008;57:774–85.

    PubMed 

    Google Scholar
     

  • 56.

    Anker JJ, Kummerfeld E, Rix A, Burwell SJ, Kushner MG. Causal network modeling of the determinants of drinking behavior in comorbid alcohol use and anxiety disorder. Alcohol Clin Exp Res. 2019;43:91–97.

    PubMed 

    Google Scholar
     

  • 57.

    Liu Y, Jiang C. Recognition of shooter’s emotions under stress based on affective computing. IEEE Access. 2019;7:62338–43.


    Google Scholar
     

  • 58.

    Ding X, Li Y, Li D, Li L, Liu X. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment. Brain Behav. 2020;10:e01814.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Lee N, Kim JJ, Shin YB, Eom H, Kim MK, Kyeong S, et al. Choice of leisure activities by adolescents and adults with internet gaming disorder: development and feasibility study of a virtual reality program. JMIR Serious Games. 2020;8:e18473.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Appelhans BM, Luecken LJ. Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol. 2006;10:229–40.


    Google Scholar
     

  • 61.

    Amato I, Nanev A, Piantella S, Wilson KE, Bicknell R, Heckenberg R, et al. Assessing the utility of a virtual-reality neuropsychological test battery, ‘CONVIRT’, in detecting alcohol-induced cognitive impairment. Behav Res Methods. 2021;53:1115–23.

    PubMed 

    Google Scholar
     

  • 62.

    Hayashi T, Ko JH, Strafella AP, Dagher A. Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proc Natl Acad Sci USA. 2013;110:4422–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Park SY, Kim SM, Roh S, Soh MA, Lee SH, Kim H, et al. The effects of a virtual reality treatment program for online gaming addiction. Comput Methods Prog Biomed. 2016;129:99–108.


    Google Scholar
     

  • 64.

    Girard B, Turcotte V, Bouchard S, Girard B. Crushing virtual cigarettes reduces tobacco addiction and treatment discontinuation. Cyberpsychol Behav. 2009;12:477–83.

    PubMed 

    Google Scholar
     

  • 65.

    Giovancarli C, Malbos E, Baumstarck K, Parola N, Pelissier MF, Lancon C, et al. Virtual reality cue exposure for the relapse prevention of tobacco consumption: a study protocol for a randomized controlled trial. Trials. 2016;17:96

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Liu W, Chen XJ, Wen YT, Winkler MH, Paul P, He YL, et al. Memory retrieval-extinction combined with virtual reality reducing drug craving for methamphetamine: study protocol for a randomized controlled trial. Front Psychiatry. 2020;11:322.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Chen XJ, Wang DM, Zhou LD, Winkler M, Pauli P, Sui N, et al. Mindfulness-based relapse prevention combined with virtual reality cue exposure for methamphetamine use disorder: Study protocol for a randomized controlled trial. Contemp Clin Trials. 2018;70:99–105.

    PubMed 

    Google Scholar
     

  • 68.

    Stramba-Badiale C, Mancuso V, Cavedoni S, Pedroli E, Cipresso P, Riva G. Transcranial magnetic stimulation meets virtual reality: the potential of integrating brain stimulation with a simulative technology for food addiction. Front Neurosci. 2020;14:720.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Ferrer-Garcia M, Pla-Sanjuanelo J, Dakanalis A, Vilalta-Abella F, Riva G, Fernandez-Aranda F, et al. Eating behavior style predicts craving and anxiety experienced in food-related virtual environments by patients with eating disorders and healthy controls. Appetite 2017;117:284–93.

    PubMed 

    Google Scholar
     

  • 70.

    Manzoni GM, Cesa GL, Bacchetta M, Castelnuovo G, Conti S, Gaggioli A, et al. Virtual reality-enhanced cognitive-behavioral therapy for morbid obesity: a randomized controlled study with 1 year follow-up. Cyberpsychol Behav Soc Netw. 2016;19:134–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Pla-Sanjuanelo J, Ferrer-Garcia M, Gutierrez-Maldonado J, Riva G, Andreu-Gracia A, Dakanalis A, et al. Identifying specific cues and contexts related to bingeing behavior for the development of effective virtual environments. Appetite. 2015;87:81–89.

    PubMed 

    Google Scholar
     

  • 72.

    Lee JH, Lim Y, Wiederhold BK, Graham SJ. A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Appl Psychophysiol Biofeedback. 2005;30:195–204.

    PubMed 

    Google Scholar
     

  • 73.

    Dirks H, Scherbaum N, Kis B, Mette C. [ADHD in adults and comorbid substance use disorder: prevalence, clinical diagnostics and integrated therapy]. Fortschr Neurol Psychiatr. 2017;85:336–44.

    PubMed 

    Google Scholar
     

  • 74.

    Lemyre A, Gauthier-Légaré A, Bélanger RE. Shyness, social anxiety, social anxiety disorder, and substance use among normative adolescent populations: a systematic review. Am J Drug Alcohol Abus. 2019;45:230–47.


    Google Scholar
     

  • 75.

    Shema-Shiratzky S, Brozgol M, Cornejo-Thumm P, Geva-Dayan K, Rotstein M, Leitner Y, et al. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: brief report. Dev Neurorehabil. 2019;22:431–6.

    PubMed 

    Google Scholar
     

  • 76.

    Droungas A, Ehrman RN, Childress AR, O’Brien CP. Effect of smoking cues and cigarette availability on craving and smoking behavior. Addict Behav. 1995;20:657–73.

    PubMed 

    Google Scholar
     

  • 77.

    Niaura R, Abrams D, Demuth B, Pinto R, Monti P. Responses to smoking-related stimuli and early relapse to smoking. Addict Behav. 1989;14:419–28.

    PubMed 

    Google Scholar
     

  • 78.

    Niaura R, Abrams DB, Pedraza M, Monti PM, Rohsenow DJ. Smokers’ reactions to interpersonal interaction and presentation of smoking cues. Addict Behav. 1992;17:557–66.

    PubMed 

    Google Scholar
     

  • 79.

    Farokhnia M, Schwandt ML, Lee MR, Bollinger JW, Farinelli LA, Amodio JP, et al. Biobehavioral effects of baclofen in anxious alcohol-dependent individuals: a randomized, double-blind, placebo-controlled, laboratory study. Transl Psychiatry. 2017;7:e1108.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Bujarski S, Ray LA. Experimental psychopathology paradigms for alcohol use disorders: applications for translational research. Behav Res Ther. 2016;86:11–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Schuemie MJ, van der Straaten P, Krijn M, van der Mast CA. Research on presence in virtual reality: a survey. Cyberpsychol Behav. 2001;4:183–201.

    PubMed 

    Google Scholar
     

  • 82.

    Sakr S, Elshawi R, Ahmed AM, Qureshi WT, Brawner CA, Keteyian SJ, et al. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. BMC Med Inf Decis Mak. 2017;17:174.


    Google Scholar
     

  • 83.

    Shiban Y, Pauli P, Muhlberger A. Effect of multiple context exposure on renewal in spider phobia. Behav Res Ther. 2013;51:68–74.

    PubMed 

    Google Scholar
     

  • 84.

    Lenz B, Müller CP, Stoessel C, Sperling W, Biermann T, Hillemacher T, et al. Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Prog Neurobiol. 2012;96:136–63.

    PubMed 

    Google Scholar
     

  • 85.

    Blanchard C, Burgess S, Harvill Y, Lanier J, Lasko A, Oberman M, et al. Reality built for two: a virtual reality tool. ACM SIGGRAPH Computer Graph. 1990;24:35–36.


    Google Scholar
     

  • 86.

    Slater M, Neyret S, Johnston T, Iruretagoyena G, Crespo MAC, Alabernia-Segura M, et al. An experimental study of a virtual reality counselling paradigm using embodied self-dialogue. Sci Rep. 2019;9:10903.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Peck TC, Seinfeld S, Aglioti SM, Slater M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious Cogn. 2013;22:779–87.

    PubMed 

    Google Scholar
     

  • 88.

    Llobera J, Sanchez-Vives MV, Slater M. The relationship between virtual body ownership and temperature sensitivity. J R Soc Interface. 2013;10:20130300.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Falconer CJ, Slater M, Rovira A, King JA, Gilbert P, Antley A, et al. Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism. PLoS ONE. 2014;9:e111933.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Nonnemaker J, Kim A, Shafer P, Loomis B, Hill E, Holloway J, et al. Influence of point-of-sale tobacco displays and plain black and white cigarette packaging and advertisements on adults: evidence from a virtual store experimental study. Addict Behav. 2016;56:15–22.

    PubMed 

    Google Scholar
     

  • 91.

    Martens MA, Antley A, Freeman D, Slater M, Harrison PJ, Tunbridge EM. It feels real: physiological responses to a stressful virtual reality environment and its impact on working memory. J Psychopharmacol. 2019;33:1264–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Zimmer P, Buttlar B, Halbeisen G, Walther E, Domes G. Virtually stressed? A refined virtual reality adaptation of the Trier Social Stress Test (TSST) induces robust endocrine responses. Psychoneuroendocrinology 2019;101:186–92.

    PubMed 

    Google Scholar
     

  • 93.

    Heinz A, Kiefer F, Smolka MN, Endrass T, Beste C, Beck A, et al. Addiction Research Consortium: losing and regaining control over drug intake (ReCoDe)—from trajectories to mechanisms and interventions. Addict Biol. 2020;25:e12866.

    PubMed 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Back to top button