Nature Neuroscience

Visual and linguistic semantic representations are aligned at the border of human visual cortex

  • 1.

    Barsalou, L. W. Perceptual symbol systems. Behav. Brain Sci. 22, 577–609 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Damasio, A. R. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989).

    Article 

    Google Scholar
     

  • 3.

    Ralph, M. A. L., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Snowden, J. S., Goulding, P. J. & Neary, D. Semantic dementia: a form of circumscribed cerebral atrophy. Behav. Neurol. 2, 167–182 (1989).

  • 5.

    Warrington, E. K. The selective impairment of semantic memory. Q. J. Exp. Psychol. 27, 635–657 (1975).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Wilkins, A. & Moscovitch, M. Selective impairment of semantic memory after temporal lobectomy. Neuropsychologia 16, 73–79 (1978).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Jefferies, E., Patterson, K., Jones, R. W., Bateman, D. & Lambon Ralph, M. A. A category-specific advantage for numbers in verbal short-term memory: evidence from semantic dementia. Neuropsychologia 42, 639–660 (2004).

    Article 

    Google Scholar
     

  • 8.

    Kramer, J. H. et al. Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cogn. Behav. Neurol. 16, 211–218 (2003).

    Article 

    Google Scholar
     

  • 9.

    Hodges, J. R., Patterson, K., Oxbury, S. & Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 115, 1783–1806 (1992).

    Article 

    Google Scholar
     

  • 10.

    Hodges, J. R. et al. The differentiation of semantic dementia and frontal lobe dementia (temporal and frontal variants of frontotemporal dementia) from early Alzheimer’s disease: a comparative neuropsychological study. Neuropsychology 13, 31–40 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. A neural basis for lexical retrieval. Nature 380, 499–505 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Damasio, H., Tranel, D., Grabowski, T., Adolphs, R. & Damasio, A. Neural systems behind word and concept retrieval. Cognition 92, 179–229 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Devereux, B. J., Clarke, A., Marouchos, A. & Tyler, L. K. Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects. J. Neurosci. 33, 18906–18916 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Fairhall, S. L. & Caramazza, A. Brain regions that represent amodal conceptual knowledge. J. Neurosci. 33, 10552–10558 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Downing, P. E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76, 1210–1224 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    Article 

    Google Scholar
     

  • 20.

    Deniz, F., Nunez-Elizalde, A. O., Huth, A. G. & Gallant, J. L. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. J. Neurosci. 39, 7722–7736 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Mitchell, T. M. et al. Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Naselaris, T., Kay, K. N., Nishimoto, S. & Gallant, J. L. Encoding and decoding in fMRI. Neuroimage 56, 400–410 (2011).

    Article 

    Google Scholar
     

  • 24.

    Nishimoto, S. et al. Reconstructing visual experiences from brain activity evoked by natural movies. Curr. Biol. 21, 1641–1646 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Miller, G. A. WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995).

    Article 

    Google Scholar
     

  • 26.

    Nakamura, K. et al. Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. Brain 123, 1903–1912 (2000).

    Article 

    Google Scholar
     

  • 27.

    Hasson, U., Harel, M., Levy, I. & Malach, R. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37, 1027–1041 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Dilks, D. D., Julian, J. B., Paunov, A. M. & Kanwisher, N. The occipital place area is causally and selectively involved in scene perception. J. Neurosci. 33, 1331–6a (2013).

    Article 

    Google Scholar
     

  • 29.

    Aguirre, G. K., Zarahn, E. & D’Esposito, M. An area within human ventral cortex sensitive to ‘building’ stimuli: evidence and implications. Neuron 21, 373–383 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Ono, M., Kubik, S. & Abernathy, C. D. Atlas of the Cerebral Sulci (Thieme Medical Publishers, 1990).

  • 31.

    Friedman, L. & Glover, G. H., Fbirn Consortium. Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage 33, 471–481 (2006).

    Article 

    Google Scholar
     

  • 32.

    Ojemann, J. G. et al. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6, 156–167 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Van Essen, D. C., Anderson, C. H. & Felleman, D. J. Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992).

    Article 

    Google Scholar
     

  • 34.

    Modha, D. S. & Singh, R. Network architecture of the long-distance pathways in the macaque brain. Proc. Natl Acad. Sci. USA 107, 13485–13490 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Visser, M., Jefferies, E. & Lambon Ralph, M. A. Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 22, 1083–1094 (2009).

    Article 

    Google Scholar
     

  • 37.

    Lewis, J. W., Talkington, W. J., Puce, A., Engel, L. R. & Frum, C. Cortical networks representing object categories and high-level attributes of familiar real-world action sounds. J. Cogn. Neurosci. 23, 2079–2101 (2011).

    Article 

    Google Scholar
     

  • 38.

    Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center–periphery organization of human object areas. Nat. Neurosci. 4, 533 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Nunez-Elizalde, A. O., Huth, A. G. & Gallant, J. L. Voxelwise encoding models with non-spherical multivariate normal priors. Neuroimage 197, 482–492 (2019).

  • 41.

    Gao, J. S., Huth, A. G., Lescroart, M. D. & Gallant, J. L. Pycortex: an interactive surface visualizer for fMRI. Front. Neuroinform. 9, 23 (2015).

    Article 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button