Nature Neuroscience

VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error

  • 1.

    Chen, P. & Hong, W. Neural circuit mechanisms of social behavior. Neuron 98, 16–30 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Berridge, K. C. & Kringelbach, M. L. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199, 457–480 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Alhadeff, A. L. et al. Natural and drug rewards engage distinct pathways that converge on coordinated hypothalamic and reward circuits. Neuron 103, 891–908 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Panksepp, J. B. & Lahvis, G. P. Social reward among juvenile mice. Genes Brain Behav. 6, 661–671 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

    Article 

    Google Scholar
     

  • 6.

    Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Tamir, D. I. & Hughes, B. L. Social rewards: from basic social building blocks to complex social behavior. Perspect. Psychol. Sci. 13, 700–717 (2018).

    Article 

    Google Scholar
     

  • 8.

    Hu, R. K. et al. An amygdala-to-hypothalamus circuit for social reward. Nat. Neurosci. 24, 831–842 (2021).

  • 9.

    Izuma, K., Saito, D. N. & Sadato, N. Processing of social and monetary rewards in the human striatum. Neuron 58, 284–294 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Bariselli, S. et al. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat. Commun. 9, 3173 (2018).

    Article 

    Google Scholar
     

  • 11.

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Roesch, M. R., Calu, D. J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci. 10, 1615–1624 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Schultz, W. Reward prediction error. Curr. Biol. 27, R369–R371 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Sharpe, M. J. et al. Lateral hypothalamic GABAergic neurons encode reward predictions that are relayed to the ventral tegmental area to regulate learning. Curr. Biol. 27, 2089–2100 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Takahashi, Y. K. et al. Dopamine neurons respond to errors in the prediction of sensory features of expected rewards. Neuron 95, 1395–1405 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570, 509–513 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Kremer, Y., Flakowski, J., Rohner, C. & Lüscher, C. Context-dependent multiplexing by individual VTA dopamine neurons. J. Neurosci. 40, JN-RM-0502-20 (2020).

  • 20.

    Bariselli, S., Contestabile, A., Tzanoulinou, S., Musardo, S. & Bellone, C. SHANK3 downregulation in the ventral tegmental area accelerates the extinction of contextual associations induced by juvenile non-familiar conspecific interaction. Front. Mol. Neurosci. 11, 360 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Starkweather, C. K., Gershman, S. J. & Uchida, N. The medial prefrontal cortex shapes dopamine reward prediction errors under state uncertainty. Neuron 98, 616–629 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Tapper, A. R. & Molas, S. Midbrain circuits of novelty processing. Neurobiol. Learn. Mem. 176, 107323 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Berridge, K. C. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 97, 537–550 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Meye, F. J. & Adan, R. A. H. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol. Sci. 35, 31–40 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21, 1421–1430 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Sharpe, M. J. et al. Dopamine transients do not act as model-free prediction errors during associative learning. Nat. Commun. 11, 106 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Geugies, H. et al. Impaired reward-related learning signals in remitted unmedicated patients with recurrent depression. Brain 142, 2510–2522 (2019).

    Article 

    Google Scholar
     

  • 34.

    Chevrier, A. et al. Disrupted reinforcement learning during post-error slowing in ADHD. PLoS ONE 14, e0206780 (2019).

  • 35.

    Sinha, P. et al. Autism as a disorder of prediction. Proc. Natl Acad. Sci. USA 111, 15220–15225 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Mosner, M. G. et al. Neural mechanisms of reward prediction error in autism spectrum disorder. Autism Res. Treat. 2019, 5469191 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S. & Schultz, R. T. The social motivation theory of autism. Trends Cogn. Sci. 16, 231–239 (2012).

    Article 

    Google Scholar
     

  • 38.

    Kinard, J. L. et al. Neural mechanisms of social and nonsocial reward prediction errors in adolescents with autism spectrum disorder. Autism Res. 13, 715–728 (2020).

    Article 

    Google Scholar
     

  • 39.

    Storey, G. P. et al. Nicotine modifies corticostriatal plasticity and amphetamine rewarding behaviors in mice. eNeuro 3, ENEURO.0095-15.2015 (2016).

  • 40.

    Prusky, G. T., Alam, N. M. & Douglas, R. M. Enhancement of vision by monocular deprivation in adult mice. J. Neurosci. 26, 11554–11561 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Matsumoto, H., Tian, J., Uchida, N. & Watabe-Uchida, M. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner. eLife 5, e1728 (2016).

    Article 

    Google Scholar
     

  • 42.

    Tian, J. & Uchida, N. Habenula lesions reveal that multiple mechanisms underlie dopamine prediction errors. Neuron 87, 1304–1316 (2015).

    CAS 
    Article 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Back to top button